THE LOGIC THEURY MACHINE
A COMP.EX INFORMATIOK PROCESSING SYSTEM

Allen Nowsll and Herbert A, Simon'
The RAND Corporation, Santa Monica, Calif.
and the Carnegie Institute of Technology,
Pittsburgh, Pa.

Sumnag;g

In this paper we describe a complex information processing
system, which we call the logic theory machine, that is capable of
discovering proofs for theorems in symbolic logic. This system, in
contrast to the systematic algorithms that are ovdinarily employed in
computation, relies heavily on heuristic methods similar to those that
have been observed in human problem solving activity. The specification
js written in a formal language, of the nature of a pseudo-ccde, that
is suitable for coding for digital computers. However, the present
paper is concerned exclusively with specification of the system, and
not with its realization in a computer.

The logic theory machine is part of a program of résearch to
understand complex information processing systems by specifying and

synthesizing a substantial variety of such systems for empirical

study -

1 The authors are indebted to Mr. J. C. Shaw of the RAND Corporation,
who has been their ariner in many aspects of this enterprise, and pare
ticularly in undertaking to realize the logic theordist in a compubere
work that will be reported in subsequenit papers.

Introduction

In this paper we shall report some results of a research program
directed toward the analysis and understanding of complex information
processing systems. The concept of an informatiosn processing system
is already fairly clear and will be made precizse in Section I, below.
The tez;ri “complex" is not so easily disposed of; but it is the crucial
distinguishing characteristic of the clzss of systems with which we
are concerned.

We may identify certain characteristics of a system that make
it complex:

1. There is a large number of different kinds of processes, all
of which are important, although not necessarily essential to the per-
formance of the total system;

2, The use of the processes is not fixed and invariable, but is
highly contingent upon the outcomes of previous processes and on
information received from the environuent;

3, The same processes are used in many different contexts to
accomplish similar functions towards different ends, and this often
results in hierarchical, iterative, and recursive organizations of
processes,

Complexity is to be distinguished sharply from amount of pro-.
cessing. Most current computing programs for high speed digital
computers would not be classified as complex according to the zbove

criteria, even though they involve a vast amount of processing., In

general they call for the systematic use of a small number of relatively

=3-

simple subroutines that are only slightly dependent on conditions. In
order to distinguish such systematic computational processes from the
processes we regard as complex, we shall call the former algorithms,
the latter heuristic methods, The appropriateness of these terms will
become clearer as we proceed.

One tactic for exploring the domuin of complex systems is to syn-

~ thesize some and study their structure and behavior empirically. This

paper provides an explicit specification for a particular complex
information processing system--a system that is capable of discovering
proofs for theorems in elementary symbolic logic. We will call the
system the logic theorist (LT), and the language in which it is specified
the logic language (LL), This system is of interest for a number of
reasons, First, it satisfies the criteria of complexity we have listed
above, Second, it is not so large but that it can be hand simmlated
(barely). Third, the tasks it can perform ave well-known human problem
solving tasks--it is a genuine problem solving system. Fourth, there
are available algorithms, and a realization of at least one of these
algorithms (the Kalin-Burkhart machine),? that can perform these same
tasks; hence, the logic theorist provides a conirast between algorithmic
and heuristic approachea in performing the same problem sclving tasks,

The task of this paper, then, is to specify LT with sufficient rigor
to establish precisely the complete set of processes involved and

exactly how they interact, This is a lengthy and somewhat arduous under-

2 See B, V. Bowden (ed.), Faster Than Thought (London: Pitman, 1953),

e

taking, but one that the authors feel is required in the present state
of knowledge. As a result, the paper abstains largely both from comment
on the more general significance of the ideas and techniques introduced,
and from relating these to contemporary work.?

The plan of the paper is to give, in Secticn I, a description of
the language, LL, in which LT will be specified, In Section IIL there
is given a verbal desciiption of LT, closely enough tied in to the
formal program to motivate most of the latter, Finally, in Section

III, the program is given in full detail.,

I
Language for Information Processing Systems

The two major technical problems that have to be solved in
studying information processing systems by means of synthesis may be
called the specification problem and the realization problem. To
study all but the simplest of such systems, it is necessary it make
a complete and precise statement of their characteristics., This
statement or specification, must be sufficiently complete Lo deternine
the behavior of the system once the initial and boundary conditions are
given, An example, familiar to mathematicians, is a system specified
by n first order differential equations in p variables.

Once the specification has been given, a second problem is to find

or construct a physical system that will behave in the manner specified.

3 We should like to make general acknowledgment of our indebtedness for
many of the ideas incorporated in LL and LT to two areas of vigorous
contemporary research activity: (1) to research cn automatic programming

of digital computers, for the approach to the construction of LLj and

(2) to research on human problem solving, for the basic structure of the
program of LT, In addition we should like to record a specific indebtedneas
to the work of 0,G.Selfridge and G.P.Dinneen on pattern recogdition, which
clarified many basic conceptual issues in the specification and realization

PO TN, ST S . SR A e - T 1=

=5~

This ean be a trivial or an unsurmountable task, For example, it is
relatively easy to find electrical circuitry that will behave like a
system of linear differential equations; it is rather difficult to
represent by circuitry most kinds of nonlineaf systems. we will call
..the problem ofv finding or constructing the physical system the
realization problem, and the particular physical system that is used
the realization.l

. Although this paper is conéemed exclusively with the specification
problem, the form of lahguage chosen is dictated also by the requirements
of realization. Since an important technique for stgdying the behavior
of complex systems is to realize them and to study thei.i' time paths em-
pirically under a range of initial and boundary éonditions, they must
be specified in terms that make this realization relatively easy.

The high speed digital computer is a physical sjrsﬁem that can
realize almost any information processing system and our research is
oriented toward using it, Its limitations are in speed and memory, rather
than in the complexity of the processes it can realize. The machine
code of the computer is the language in which a system must ulitimately
be specified if it is to be realized by 2 computer. Conversely, however,

once the system is correctly specified in machine code, thé realigation

b we prefer "realization" to "simulation,” for the latter implies that
what is being imitated is another phyeical system., Since the specifi-
cation is an abstract set of characteristics, not a physical system,
it is not correct to speak of "simulating"™ the speciflcation.

<
problem is essentially solved; for the computer can accept these
specifications, and will behave like the system specified,

The machine code, although suitable for communicating with the
computer, is not at all suitable for human thinking or communicaticn
about complex systems. For these purposes, we need a language that
is more comprehensible (to humans), but one that can still be inter-
preted by the computér by means of a suitable program. Technically,
such a language is known as a pseudo-code or interpretive language.

Hence the two problem# of specification and realization of an informa-
tion processing system are subsumed under the single task of -describing
the system in an appropriate pseudo-code.

This paper is concerned solely with specifying the system of LT.
The particular language, LL exhibited here has not been coded for a
computer. However, one very similar to it, which is less convenient
for exposition, is in the process of being coded and will be the subject
of later papers. Here, no further mention will be made of the relation
of the logic language to computers,

The terms of the language that are undefined—its primitives-
will determine implicit.ly a set of information processes that are to
be rezarded as elementary and not reducible, within the lenguage, to
simpler processes. The more complex processes are Lo be specifisd by
suitable combinations of these elementary processes. Generally speaking,
the elementary processes in LL are of the nature of information processess
that is, their inputs and outputs are comprised of symbolized information,
Information Processing Systems: Basgic Terms

An information processing system, IPS, consists of a set of
memories and a set of information processes, IP’s. The memories form

N

the inputs and outputs for the information processes. A memory is a
place that holds information over time in the form of symbols, The
symbols function as information entirely by virtue of their capacity
for making the IP's act differentially. The IP's are, mathematically
speaking, functions from the input_ memories and their contents to the
symbols in the output memories., The set of elementary IP's is defined
explicitly, and through these definitions all relevant characteristics
of symbols and memories are specified.

Particular systems can be constructed from the memories and
processes of an IPS that behave in a determinate way once the initial
information in the memories is given (initial conditions), along with
whatever external information is stored in the memories during the
course of the system's operation (voundary condj.tions)o Each such
particular system we call a program, IPP. Thus an IPS defines a whole
class of parhicuiar IPP's, and conversely, an IPP consists of an IPS
together with a set of rules that determines when the several informa-
tion processes will occur. The logic language is an IPS; the logic
'bheorist» is an IPP. Many variations could be constructed with
the same IPS. |
Symbolic Logic

The logic 1anguagé handles information referring to expressions
in the sentential calculus and their properties. This paper assumes
some familiarity with elementary symbolic logie,” and only a
mitemss, we have used the system of A N.Whitehead and Bertrand
Russell, Principia Mathematica, vol. 1, 2nd edition (Cambridge: 1925}, An
introduction sufficlient for our purposes will be found in D.Hilbert and

W. Ackermann, Principles of Mathematiecal Logiec (New York: Chelsea, 1950),
Chapter 1, |

8=

resume of the notation will be given.,

The sentential calculus deals with variables, D, Qs vovs Az By ooy
a, by, .0 which are usually interpreted to mean sentences. These
variables are combined into Qréssions by means of connectives. The two
connectives taken as primitive by Whitehead and Russell (and by us) are
"ot" (=) and "or" (v). In this paper we shall have occasion to use
only one other connective: "implies" (), whichj?gaﬁned by:6 |

1,01 P*q odef PV Q (Read: (p implies g) is equivalent
by definition to (not—p or q),)

Coding

A logic expression (X) is represented in the IS by a set of
velements (g:_) , one corresponding to each variable and to each connectiva
(excluding the punctuation dots and negation symbols) in the logic ex=
pression. Each element holds a number of symbols that refer to the
various properties of the element. (Note that the term "element” and
not the term "symbol™ is used in this paper to refer to the variables
and connectives in logic expressions, S mbols denote properties of
elements, and to each element there corresponds a number of symbols.)
An example will show what is meant by these temsﬂ Consider the
expression 1.7:

1.7 D 40 Q¥ =D ((not-p) implies (q or not-p).}

6 For ease of reference, we shall use the numbers employed by Whitehead
and Russell to identify particular propositions and definitions, only
omitting the asterisk (*) that they insert in front of the number.

7 We follow Whitehead and Russell in using dots in place of parentheses
as punctuation, It is unnecessary here to give exact rules for mumbers
of punctuation dots-

G

The entire sequence is the expression; X1 It consists of ths
elements =p, =<, 4, V, =P- The expression may be written in "tree" form,

as follows, where the rectangles indicate the elements:

Level Haig&element«
Left — Right Right
0 Subelement subelement subexpression
P = none — .,}- -
~
1 . - - ™~ ~
. -p _ v K(-
P=1L 7 P=1R \
2 / -q ~p /
l P = RL P=HR /s
\ —
S— —_— - J—

— Swo——— s Sssm———

The main connective at the top is called the main element, IM 1.7

The other elements are reached through a series of Left and Right branches
from the main element. With eéch element there is associated a sub-
expression, to wit, the sub-tree of which that element is the top
element . |

The symbols in each element provide the following information, some

of which will be explained more fully later on.

Symbol

G The number of negation m (=) before the expression. In
the figure above, two elements~-=those containing the
variable p-~have G = 13 all the rest have G = O, If a negation
applies to a whole expression it appears in the element
associated with that expression.

v Whether the element is a variable cor not

F Whether the element is free, i.e. available for substitution.

This is relevant only if E is a variable.

Syabol

=10=

The connective (v or—). This is relevant only if E is

not a variable, |

The name of the variable or éxpression. In X(1,7), there

are variables named "p® and "q".

The position of the element in the tree. This is represented
by a sequence of L's and R's, counting branches from the
main element. In the figure, the P for each element is
shown beneath the element,

The location of the whole expression (not the element) in

storage memory.
Whether the element is to be viewed as a unit or not. The

term "unit" will be explained later,

The eight symbols defined above characterize completely each

element and the expression in which it occurs. For many purposes, however;

it is convenient to define additional symbols ("descriptive symbols")

that correspond to interesting or important properties of expressions.

In LL, three such descriptive symbols, represented as small positive

integers, are defined.

These are:

H

The number of variable plages in an expression, Thus X(1.7)

has three variable places: P = L, RL, and RR; hencs, H(1.7) = 3.
The number of distinct variables (i.e., distinct names) in

the expression, ignoring negation signs, Since X(1.7) contains

the names p and g, J{(1.7) = 2,

(’}.1“ e=

K The pumber of levels in the expression, The number of level
corresponds to one plus the maximum number of letters in P
for any element in the expression. Hence, K(1.7) = 3s

Memory Structure
There are two kinds of memories, working memories and storage

memories. The major distinction—-that all information to be procassed

‘must be brou.ght' in from the storage memories to the working memories

and then returned—-will be brought out clearly when we define the elementary

IP's, Structurally, the working memories hold single elements, E, and
also have space for the symbols H, J, and K. Hence, we can picture a

working memory unit as:

The storage memories consist of lists. Each such list holds
either a whole logic expression or some set of elements generated
during a process, such as a set of elements having certain properties.
Each list of logic expressions has a location, symbolized by A. The
elements are placed in the list in arbitrary order, since the informa~
tion in each element is sufficient to locate it wnequivocally in ths
tree of the logic expression. {The ordering of the list is used only
to carry out searches.) For example, X{1.7) might be listed in the
storage memory thus:

A (1.7):

No limitations are imposed here on number of memories, either
working or storagze. In actual fact, the number used is not very large,
Three particular lists have special locations in storage memory

that can be referred to directly in IP's: (1) the theorem list, (T), of

s WAz

all axioms and theorems that have previously been proved; (2) the zctive
problem 1list, (P); and (3) the inactive problem list, (Q). Each list
consista; of the main elements of the appropriate expressions (theorems
or problems, respectively), in arbitrary order. For the rest, the storage
memory is entirely unspecialized.
Information Processes

A term that specifies an IP is called an instruction, by analegy
with computer terminology. As Figure 1 shows, an instruction consists

, REFERENCE PLACES
OPERATION ~ LEFT CENTER RIGHT BRANCH LOCATION

Figure 1
of an operation part, three reference places (left (L), center (C),
and right (R)), and a brench location, (B), What kinds of operaticns
can be performed by an IPS will depend, first, on what elementary IPtg
are postulated, and second, on what restrictions are placed on thae ways
in which they can be combined. For the moment, the exact nature of
the elementary processes is unimportant; for conereteness, the reader
may think of the following as "typical" elementary processess bransferring
 informetion from memory X Lo memory y, or adding the numbeyr in memory
x to the number in memory X

The referé'nce“ places refer to the working memories, so that ihe
same operation may operate on different memories at different timss and
under different circumstances, The working memories will be designated

with small integers, 1, 2, .., and with the leiters x. ¥, %o

No direct reference is made in an instruction to any storage
memory, except I and P, Lists are located by the A stored within
elements belonging to the lists; and elements within a list are located
by their relztion to known elements. An example will make this clear
A typical operation involving the storage memory is:

OPER LCRB

FR Xy
which reads: Find the element that is the right subelement of E(x)e-
i.e., of the element in working memory x--and put it in working memory
Y. The operation is executed thus: Working memory x contains the
A(x), which is the location of the expression in which E(x) oceurs,
Memory x also contains the symbol P(x). Since we wish to put in gy the
right subelement of E(x), P(y) is by definition obtained by appending
an R to P(x). Hence, we can determine P(y), and can locate E(y) by
going to storage memory A(x) and searching the list of its elements in
order until we find\iﬁe>élement with the cor*ect;go We then transfer
this element, which is the one we want, to working memory Y.
Programs and Routines

The rule of combination of IP's is very simple: any one IP may
follow another., We shall consider time to be discrete,using it
essentially as an index, and shall assume that only one process occurs

at a time., .e say that a purticular IP has gontrol when it is occurring.

Thus, when a sequence of IP's occurs one after the other in consecutivs
time intervals, there occurs a series of transfers of control from each

IP to the next in the sequence.

’“H}"’

The operation of any IP includes 2 processing component and &
control component. The processing component changes the memory content
of the IPS; the control component transfers control to another IP.

In some IP's, processing is the significant component. In these the
transfer of control is independent of the memdry contents at the time
the IP occurs. In certain other IP's, control is the significant
component. These do not alter memory contents, but transfer control
to various IP's depending on the memory contents when they occur, In
other IP's both processing and control components are significant.

Control. We allow only a binary branch in control at any one
.instruction, Normally, control passes in a linear sequence through a
set of IP's. We write this sequence vertically. Each instruction is
considered to have a location in the sequence. For branch instructions
(those in which the control component transfers control to one of two
IP's depending on memory content), control transfers either (1) to the
next instruction in the séqnence or (2) to the insﬁrustion named in
the branch location. These Jocations are designated by letters, A, B,

C, » o o In Figure 2, Instruction # transfers control to #2§ #2
transfers control to #3 or branches to A (which is #.) depending on
memory content; #3 transfers control %o #,; #, transfers control %o #5
or branches back to B, which is #1.

Each control operation can be peversed in sense by putting &
minus sign in front of the operation name. The effect of the minus sign
is simply to reverss the conditicn of %rénsfbra That is, if CC-A Lransfers
to A when two specified numbers are equal, then =(0C=A transfers to A when

these numbers are unequal,

.

LOCN OPER, LCR B
9}'3:-—-4#1

#2""""’"—-- —
\ir
A~ -~=@#’+—-——- —]

thc

Figure 2

Routines. We will call such a list of instructions with a control
network_l,é routine, agéin,, in direct analogy to computer terminology. Notice
thét a routine satisfies our definition of a program (IPP): if all the
memories referred to have specified initial contents, the routine de-
termines their contents at all later times covered by its duration.

If we postulate a set of elementary information processes, each
specified by an instruction, it might be supposed 'thm; each routine
would define a new (non=elementary) information process. This is not
the case, for in LL the format of an instruction (Figure 1) allows
reference to not more than three working memories and to not more than
one branch., Hence, only those routines may be regarded as definitions
of IP's which satisfy the following conditions:

1. The routine contains branches to not mcre than two instructions
outside the routine; |

2. Not more than three working memories that are to be referred
o subsequent;y are changed by the routine. This means that even
though other working memories are changed, there is ne way to refer %o

these memories in subsequent routines.

Within these restrictions we can define a set of new IP's im
terms of the elementary IP's, then another set of IP's in terms of both
the elementary and jde:t':inecit IP?s, and so on; thus creating a whole hierarchy
of IP's and their corresponding routines. The elementary IP's and the
hierarchy of defined IP's for LT are given in the Section III, and its
structure explained in some detail in Section II.

The restrictions imposed above c:n numbers of branches and working
memories in IP's have the following two consequences for the sﬁxrucﬁure
of the routines that..are used to define IP'a:

1, A working memory can be used only within the routine in which
it is introduced. That is, working memories iniroduced in a particular
routine cannot be referred to when control is in any other routine, ex-
cept as noted in rule 2. For this reason, no ambiguity arises from
using the same names; 1, 2, o » .; for different memories in distinct
routines, ‘

2. Within the routine that defines a particular IP, reference
may be madé to the working memories that are designated in the reference
places of that IP, Let Iy be an instruction that appears in the routine
defining I,. The amoh L; C, R in I refer, respectively, to the
working memories in the left, center, and right reference places of
instruction Iy, in whose definition I occurs. (See for example the
first instruction, FEF, in the routine given in full at the end of this
section.) Some such arrangement is obviously required if the defining

routine is to have any connection with the instruection it defines.

Elementary Processes
In LT there are forty four different elementary processes. Thesze

represent variations on eight types of operation.. The remainder of
this section will be devoted to a description of these types, and an
enumeration of the elementary processes that beloag to each typs.
Separate, explicit definitions for each elementary IP are given in
Section III, The first letter in the name of an operation designates the
type to which it belongs: A for assign; B for branch, £ for compare,

F for find, N for numerical, P for put, S for store, and T for test.

Find instructions obtain informatioa from storage memory on the
basis of stated relationships, and put it in specified working memories.
An example, FR-x-y (Find the right subelement of B(x) end put it in 7),
has already been described. Two other E instructions ars very similar?
FL (Find the left subelement) and FM (Find the mein element).

Other Find instructions involve ordering relations on the lishs,
An example is:

OPER, LCR B
FEF xy A

This reads: Find the first element in X(x)<—the expression associated
with E(x)=-in the list A(x), and put this element in y. Then go %o
next instruction, but if no clement is found,v brench to instruction A.
Here the order of elements is essential since there may be many elements
in X(x). This kind of operation is used to start a search; ii is alwaya
combined with an instruction, FEN for continuing and terminating the
search:

QPER. L CR B
FEN Xy A

This reads: Find the element in X(x) that is next in order after

E(y) and put it in y. When such an element is found, branch to A; if none
is found, transfer control to the next instruction in sequence. FEF

and FEN together allow the familiar cycling or iteration that is a

common feature of comp__zting routines:

gAFEny

Process
Jon E(y)

FEN xy A

(after all elements of X(x) have been processed)
The complete list of elementary Find instructions is:

FEF FL b |
FEN FR

Stope instructions transfer information from working memory
back to storage memory. An example is:

OPER, LGCR B
S x

This simply reads: Store E(x) in the storage memory, If the element in
x is one that was previously withdrawn froﬁx storage, it will be replaced
in its original location within A(x); if it is a new element in list 4,
it will be placed at the end of the list.

Another elementary Store instruction is SEN, which puts E{x)
into storage memory at the end of the list A(y). A third is #SX, which
simply stores a gopy of X(x) in memory location A(y).B

8 Ceptain of the Store instructions are marked with an asterisk. These
are treated as elementary operations in the present section and in Par%
I of the Appendix, but in Part II of the Appendix it is shown how they
can be defined in terms of simpler elementary operations.

The cory.lete list o elementary stope instructions ig:

£ #3X *SXL, *SXM
SEN *SXE *5XR

Instructions beionging to the remaining six types ape concerned
only with workin Bemory. (See Figure 3) No complex processing may

take place in starage meilory, and conversely, ag e have Seen, no informa-

tion may be strreq in vorking WeROXy on any but a temporary baais;

L T

O & P

Con n“l Mem- | M ot
686 = mm s
Figure 3

Put Jastructions triusfer information ang Symbols around the
working merory. (Notice that, unlike these, Find and Stope instructions
dsalt onlr with whole e'aments,) A typical Put instruction ig:

OPER. L CR B
xy

This roads: pyg E(x) in E(y), The operation leaves E(x) wichanged

and duplicates it in E(y). The variations on thig iﬁatrm:tion cor-
Tesperd to the diff rent sywbols in an element that may need to be
trans erred. The Jist of Put instructions in:

L4 FCy PK Py
PC-» PUB

Humerical - agtruetions carry out various kings of apithmetic ang
logiial operatins, An example is:

OPER. LCR B
BAG %

e
vl

This reads: Add 1 to G(x). Operaticns are required to permit addition
and subtraction for symbols G, H, J, K, and W. The list of Numerical

instructions iss

NAG NAH NAJ NSG
NAGG NAK NAW NSGG
Agsign instructions write in new names and locations in elements

that are in working memory. One Assign instruction is:

OPER. L CR B
AN x

This reads: Assign an unused name to E(x). The other Assign
instruction, AA, assigns new list locaﬁons , each keeping track of the
names or lists already in use. There are, then, only two Assign ine
structions:

AA AN

Compare instructions belong to a class of pure control instructions.

They compare two symbols for equality (or, if appropriate, for the
relation "greater®); then transfer to the branch lecation if the
condition is satisfied and to the next instruction in sequence if the
condition is not satisfied. The sense of the branch on these and all
other branch instructions can be reversed by & minus sign preceding
the operation. A typical example is:

QPER. L CR B
cC xy A

This reads: If C(x) = C(y), branch control to location A; if mot, go te
the next instruction in sequencs, That is, if the connective in X is
jdentical with the connective of y, we branch to 4. Notics that there

is no change in memory content; only a transfer of conirol has occurred.

@i
The Compare instructions are:

cC CGG CWG
CN CKG CPS

Tegt instructions are also control instructions, They test the
properties of a single element, and transfer control accomnlingly. The
variations of the type deal with different properties. An example dis:

QOPER. LCR B
TU x A

This reads: If E(x) is a unit, transfer control te A; if no%, go to
the next mstruction in sequence, TC+ transfera control if C(:) is
implies, goes to the next instruction if C(x) is or, The Test in-
structions are:

™ T8 i) TF
TC» ™ TGG

Branch instructions are unconditional cortrol instructiins that
cause the program to branch to the indicated aidress instead af going
to the next instruction in sequence. The simplest example ia:

OPER, LCR B
B b

When this instruction is reached, the program simply branches to

.instruction b in the same routine.

When the instructions BHB or BHN cccur in a routine, they cause
the program to branch to an address determined by the higher-level
instruction that the routine defines, For example, suppose BHE appears
as one of the defining instructions within the routine:

OPER. L CR B
¥Sh x b

Then, the cccurrence of BHB will eause control to branch te the

address b of MSb.

Suppose further that MSb appears as one of the instructions in the
routine Ex, and that the instruction MDt appears immediately after
MSb in Ex. Then, if BHN is one of the instructicns in the routine MSb,
its occurrence will cause control to branch to the pext instructicn
after MSb in the higher routine, EX, i.e., to MDt, Thus BHB and BHN are
the instructiocns that temminate control by a pa:%‘t,icular“ routine; and
cause control to transfer, respectively, to the branch designated in
the higher-level instruction defined by the routine, or to the highsr-
level ins‘aructionv that follows the routine., Instruction BHB produces
the former transfer, BHN, the latter. These, then are the three Branch
operations:

B BHB BHN

It will clarify matters, and provide some intmduetion' to ihs
complete program given in Bection IIlI, to set forth in detail one of
the simpler defined routines, the routine NH, This routine consists
of six instryuctions, all of them primitives included in the list we
have already given:

A _OPER LCHRB

NH x Count the number of variabls
places in X(x), and record
FEF L1 C the result in H {x).
A =CPS 1L B
=TU 1 B
NAH L
FEN LY A

[vs]

BHN

3=

{1) FEF finds the first element in X(x) and puts it in working memory
1, 7f there is no element, it branches to C. (2) =CPS (nobe the negative
sense) determines whether E(1) is a subelement of E(x). If it is po
control transfers to By if it is, control transfers to the next instruc-
tion in sequence. (Heneceforth we will abbreviate these transfers as-B
and -next, respectively.) (3) <=TU determines whether the E(1) is a
“unit (i.e., is to be viewed as a jrariablec) If it is not (negative
sense, -B, if it is, <next, (4) NAH increases by 1 the number H(x).,
(Because of the previous branches, NAH will occur enly if the element
in 1 is viewed a variable and is a subelement of the element in x.) (5)
FEN finds the next element in X(x), puts it in working memory 1, and
returns control ﬁo ihst,ruction 4, whereupon the cycle is repeated from
step (2). If there are no more elements,- next. (6) BHN te#ninates
the routine after all‘ elements in X(x) have been e.w:aminéd, and t,ra;xsferzs
control to the instruction that follows NH at the next higher level of
the hierarchy of routines.
Conclusion

' We have now completed our description of the 1.anguagé LL having
_ cﬁtlined the coding system, the manem' structure, the structure of the
infoma’r.ion processes; the roﬁtines, and the types of elementary procssses.
Further detail can be found by consulting Saction III, In Ssetion II
we shall construct in this language & program, LT, that will perait

the information processing system to solve problems in syrbolie logiec.

