II

The Logic Theory Machine

In the language we have constructed, we have variables
(atomic sentences): p, @, rs A, B, C, ...t and gonnectives: - (not),
v (or),- (implies), The connectives are used to combine the variables
into expressions (molecviar sentences). We have already considered
one example of an exprs;ssion:
1.7 “P oo Q V =P

The task set for LT will be to prove that certain expressions
ape theorems—tha’, is, that they can be derived by applicatiob, of
specified rules of inference from a set of primitive sentences or

The tvo connectives, — and v are taken as primitives, The third
connective, , is defined in temms of the other two, thus:
1.01 P™q =ger “PVQ

Tne five axioms that are postulated to be Lrue are:

1.2 PYDP P

ilaB ‘ P te QV P

Lok pvq-@-n. qvp

1.5 P Vo QV Y 3 Q Ve PV Y
1.6 P* QG B TP VUD P TV G

Each of these acioms is stored as a list in the theorem, 1, with

¢il its variables marked free (F) in their respective elsments.



From the axioms other trus expressions can be derived as theorems.

In the system of Principia Mathematica, there are two rules of inference

by means of which new theorems can be derived firom true expressions

(theorems and axiome). These are:
Rule of Substitution: If A(p) is any true expression containing szﬁ“gﬁg&
the variable p, and B any expression, then A(B) is also a true

expression.

Rule of Detachment: If A is any true expression, and the expressiofi  becceases

A - B is also true, then B is a true expression, Lf'\q—:{q:n':zgd
To these two rules of inference is added the rulg of replacement, -
which states that an expression may be replaced‘ by its definition,
In the present context, the only definition is 1,01, hence the rule of
replacement permits any occurrence of (=p v q) in an expression to be Lt ions

veplaced with (p = q), and any occurrence of (p - q) to be replaced >r=Y""TC
with (=p v @).7
In this system, then, a of is a sequence of expressions, the
first of which are acecepted as axioms or as theorems, and each of the
remainder of which is obtained from one or two of the preceding by the

operations of substitution, detachment, or replacement.

9 As we shall see, 1.0l is not held in storage memory, but is pepresented,
instead, by two routines for actually performing the replacements.
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Example; prove 2,01: p - =p % -p-

2.01 Proof:l® (1) ipvp s P (axiom 1,2)
(2) ipvp o2ep ~ { grom (I} by substitution of -p for )
g (3) Ip=p o*%-p (from (2) by replacement on lefd)

The problem now is to specify a program for LT such that, when a
| i)roblem is proposed in the form of a theorem to be proved (like 2.0l
' above), a proof will be discovered and constmcﬁeci,x First, it sho.dd
be cbserved that there is a systematic algorit.lm for constructing such
& preof, should one exist. Starting with the five axioms, we construct
all the theorems that can be obtained from them by a single application
of th§ rules of substitution, detachment, and raplé»cemmmn We thus
obtain the set of all theorems that can be obtained from the axioms by
proofs not more than one step in length. Repeating this process with
the enlarged set of theorems, we obtain the set of all theorems that .
can be derived from the axicas by proofs_ not mopre than two steps in
length, Continuing, we finally obtain the set of theorems that can be
derived by proofs not more than n steps in length.
Now if the theorem in which we are interested possesses a proof
k steps in length, we can, in principle, discover it by constructing all
valid proof chains of .3l,ength not more than k, and selecting any one of

these that terminates in the theorem in question. This "in principle”

;L

10 e exelamation mint in front of an expression indicates that the
expression in question is asserted Lo be Ltrue; To designate an expression
whosc truth has net been demonstrated, we will use a qusetion mark pre-
eeding bhe expressionc '

11 2 *2 4 4 - > » 3

A technical difciculty arises from the fact that there is an infinite
cumber of valid substibutiens, This difficulby cen be removed prabtlhiey
easily, bubt the neestion is irreleovent for the purposes of this paps¥.

-
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possibility may in fact be computationally infeasible because of the
very large number of valid chains of length k that can be constructed,
\\\\\ even when k is a nﬁmbe;r of modgi-ate size, Under these circumstances,
the rulaé of inference do nou give us sufficient guldance to permit
us to construct the proof we are seeking; and we need additional help
from some system of hsuristic.
The problem will be solved if we can devise a program for cone
' 'sﬁmcting chains of theorems s not at rendom but in response Lo cues in
such a way as to make it probable that the desirsd proof will be dis-
covered within a reasonabls computing time. For example, suppose the
mies of inference wers such as to permit any given proof chain to be
continued, on t?:e average , in ten different ways, Then there would be
ten thousand proof chéiﬁs four steps in length (1,03"% The expsected
nwnber of proof chains that would have to be exemined to find any
‘ particular one of these by random search is five thousand. Supposa 8
hswever; that LT pesponded to cues that permitted eight of thes ten
continuations at each siep to be eliminated from consideration. Then
the number of proof chains four steps in length that would have io be
examined in full would be only sixteen (24) s and the é;gaec‘iséd ouber
that would have to be examined, only eight.
The Program of LT
We wish now to describe explicitly the program of LT, The
program is given in full in Sectieﬁ IXI; hence, in thetext we chall
refer frequently to Section IXI for detail. We shall refer to each

routine by its name {e.g., LMe for the mstehing roubine), bub we
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shall need some additional notation to refer %0 the main segments of
routines that do not themselves have names. The names of these segments
are given in Section III in the colunn marked "Seg.” In each of these
segnents there is generally one main operation to be performed; and
this main operation, or sub~routine , is usually surrounded by a humber
of procedural and control operations that fit it intc the larger routine,
In ordinary language, we~ would say that the "function" of the segment is
to perform the main operation that is contained in it. For example,

the main operation in the third segment of LMe is LSby, a substitutione=
the function of this segment in the matching program is to substitute
Oae sub-exprescion for another in one of the expressions being matched.
Hence it will sometimes be convenient to indicate the main operation

in this segment by naming the segment LHe (Sby). Similer designation
will be used for the other segments of routines. This notation, vhile
not exact, emphasizes the fact that each routine consists in a ssquence
(or branching tree) of main operations that are connected by procedural
and test operations. Thus, an abbreviated description of the matching

routine might be given ass

IMe

T Perform diagnostic tests

Life Recursion of matching with next elements in
legic expression

Sty Substitute the element y for the element x

Shxe Substitute the element x for the element ¥

CN Compare variablesin X onliy |

Bp Rsplace conneciives, if required and possible



The Substitution Method
Let us teke as ow first example the very simple expression, 2,01,

for which we have already glven a proof. We supposs that when the
problem is proposed, LT has in its theorem memory only the acioms, 1.2
to 1.6, We wish now to construct a proof (the one given above, or any
other valid proof) for 2.0l.

As the simplest possibility, let us consider proofs that involve
only the rules of substitution and replacement, We may state the problem
thus: how can we search for a proof of the theorem by substitution withe
out considering all the valid substitutlons in the five axioms? &'e
will use two devices to focus the gemh. Both of these invelive “working
backward" from the theorem we wish to prove—-for by taking account of
the characteristics of that theorem, we can obtain cues as to the most
promising lines to follow:

1. In attempting substitutions, we will limit ourselves to axicms
{or other true theorems, if any have already been proved) that are in
some sense "similar® in structure to the theorem to be proved. The
roubine that accompliéhas this will be called the Lest similarity routinve,
CSm.

2. In selecting the particular substitubtions to be made in a
theorem that has been chosen for trial, we will sttempt to match the
vapriables in that theorem to the variables in the expression %o bs
proved, Similarly, we will try to use the rule é:bf replacement to match
connectives. The routine in which these variocus operations occur is

galled the matching routins, L¥ec,



Using these devices, the proposed routine for proving theorems——
the method of substitution, MSb--works as follows: (1) MSb(Sm). Search
for an axiom or theorem that is similar to the expression to be proved.
(:2) MSb(Mc), When one is found, try to match it with the expression
to be proved. If a match is successful, the expression is proved; if
the list of axioms and theorems is exhausted without producing a mateh,
the method has failed. (Reference to Section III will show that there
is another segment of MSb—=MSb(NAW)--that we have not mentioned. The
function of this segment will be discusged later in comnnection with
the executive routine, Ex.)

To see in detail how the method operates, we next examine, in
turn, the main operatiéns, CSm and LMe, of the two segments of the
substitution method. For concreteness, we will carry out these
operations explicitly for the proof of the expression 2,01,

2,01 ? P» SP oo =P

Test for Similarity, CSm. We must state what we mean by
similapity. We start from a commen-sense viewpoint ani rejard two
propositions as similar if they "look" similar to the eye of a logician,
But in Section I we have already defined three characteristics of &n
expression that can be used as criteria of similerity:. These are: K,
the number of levels in the expression; d, the number of distinct
variables in the expression; and H, the number of variables in ¢he

axpreasionalz

The assertion is that two expressions having the same/descripbicn
2300k alike" in some undefined sonse; and hencs if we are segking to
prove one of them as a theorem, while the other is an axiom or theorem

(cont'd = sse next page)



=30

Applying these definitions to 2.01 (routines NK, NJ, and NH,
respectively), we find that K = 3, J =1, and H = 3, That is, 2,01
has three levels, one distinct variable (p), and three variable places.
We may :.rite this:

- D(2.01) = (3,1,3)

In the same way, we can write descriptions for the various
sub-expressions contained in 2,01l==in particular, the sub-expressions
to the left and to the right of the main connective, respectively,

We have for these:
DL(2,01) = (2,1,2);  DR(2.01) = (1,1,1)

Now, we say that two expressions, x and ¥, are similar if they

left amd '
have identical/right descriptions, i.e., if DL(x) = DL(y) and DR(x) =
DR(y). The routine for determining whether two theorems are similar,
CSm, consists §f two segments: (1) CSm(D), & description segment, and
(2) csm(CD), a comparison of descriptions. The description segment is
made up of four description routines, D--one each to compute DL(x),

DR(x), DL(y), and DR(y). The comparison segment is made up of two

; compare description routines, CD, one of which compares DE(x) with

DL(y), the other DR(x) with DR(y).
A diagram of the hierarchy of principal sub-routines in testing
similarity will look like this:

12 cont'd =

already proved, then the latter is likely construction material for
the proof of the former. Empirically, it turns out that with the particular
definition of similarity introduced here, in prowving the theorems of
Chapter 2 of Principia Mathematica about one theorem in five that is stored
in the theorem memory turns out to be similar to the expression we are seek-
ing to prove. It is easy to suggest a number of alternative, and quite
different criteria that would be equally symptomatic of "similarity." One of
these alternatives will be discussed in Section III. Uniqueness is of no
account here; all we are concerned with is that we have some criteria that
Wl _ thet oalest thaovema cuitabls for mobehing,
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In the case of 2.01, the segment MSb(Sm) will search the list of

axioms and theorems and will find that axiom 1.2 is similar to 2,01:

'41e2 3 pVPO"“p

for it, too, has the descriptions: DL(1.2) = (2,1,2); DR(1.2) = (1,1,1).
Moreover, 1.2 is thé only axiom that has this dascripbiqna

M Expressions, LMe, Next we carry out a point-by-point
‘ .compari.son between 2,01, the expression to be proved, and 1.2, the axionm
| thaf. is similar to it. We sta-t with the main connectives, and work
systematically down the tree of the logic exp:v a3sions--always as far

as possible vto the lefﬁa In the vresent cass.

‘»’__::a.he srder An which ws wllj. mateh iss main connective
(P = none), connective of left sub-expression (P=L), left variable of
sub-expression, (P:LL), right variable of sub-expression (pP=LR), right
sub-expression (P=R).

The matching routine is fairly complicated, cénsiétih‘g of six
segments, but not all segments are employed each time two elemenis are
matched. The first segment, LMc(T), and the initial operations of
most of the other segments, consists of tests that determine whether
4he two elements to be matched are already identlcal, or whéther they
can be made identical by substitution (if one is a free varieble) or
by replacement (if both are connectives), or=-finally--whether matching

is impossible, In Section III this network of decisions is laid out
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jn graphic form, The second segment, LMe(LMe), is a recursiozi of the
matching routine with each of the next lower pair of elements in the

tree of the expression. This recursion segment operates only if the

elements to be matched in LMc are identical connectives (or have been
made 50).

The third and fourth segments, IMc(Sby) and LMc(Sbx), apply the
rule of substitution when the tests have shown this to be appropriate,
LMc(Sby), which is executed whenever E(x) is a free variablo,13 simply
substitutes the expression X(y) for E(x). LMc(Sbx), which is executed
whenever E(y) is a free vaciable, substitutes the expressicn X(x) for

_E(y). In both cases, of course, substitution must take place througho&t
the whole expression in which the free variable occurs. This is télxan
care of automatiéally by the process LSb. Also, since LMe¢ matches Xxg)
to X(y), LMc(Sby) has priority over IMc(Sbx), as a careful examination
of the decision network will reveal,

The fifth segment, LMc(CN), reports the successful termination
of the matehing program if E(x) and E(y) are identical variables, its
failure if they cannot be ma ‘e identical by substitution.

The sixth segment, LMc(Rp), operates when E(x) and E(y) have
different connectives, The segment replaces the connective in x by

the connective in y whensver this replacement is legitimate, and then

PRI AL 55 W I

Essentially, a variesble ie free when no substitution has yet been
made for it. After any substitution it is bound and nc longer available
for subsequent substitutions. As previously nobed, all variables in
expressions stored in the theorem memory are frse.
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returns control to the recursion segment.

By wirtue of the recursion segment, the matehing routine will
attempt to match each pair of elements; if ‘successful, will proceed to
_the next pair; if unsuccessful, will report failure, Hence, the
routine will continue until it mekes the theorem that is being matched
identical with the expression to be proved, or uniil the matching fails.

The hierarchy of principal routines looks like this: |

LRpv*
anav}/\i,mc
LSbh :

Returning to our specific example of two similar expressions,

1,2 and 2.0, we carry out the matching routine as followass:

2,01 ? P® =P o% =P

1.2 § Av A A

(We use A instead of p in 1,2 to indicate that the varisble is freg (F).)

a,> The main connectives agree: both are® ,

b. Proceeding downward to the left, the comnective is = in 2,01,
but v in 1.2, To change the v to =, we must have (because of the
definition, 1,01), a - before the left-hand A in 1.2, This we can
obtain by making the substitution of =B for A in 1.2, Having carried
out this substitutioa; and ha;wing then replaced (=B v =B) with
(B+ =B), we have the following situation:

2.01 ? D =D oo P
1.2° § B+ =B .,» =B



¢. Proceeding a ain to the left, we find B in 1.27, but p in
2,01, We therefore substitute p for B in 1,29, and now find (afier
recursion through the remaining two elemants) that we have a complsto
matchs

2,01 ? p*-P ot =P
1.2 § p*=po® =P

Thus, we have discovered a proof of 2,01 {in facht, pvecisely the
proof we ~.‘gave befors), which consists in substituting the veviable -p
for the variable in 1.2, and replacing the connective v in 1.. with =,
The reader who wishes to vompare these operations in detail with the
matching routine will observe that (in addition to the test ve@;wmc:e)
in step (a) the sequehce 1M2(CN) was involved; in (b), the secuence
IMc(Rp), in (c), the sequince LMe(Sby). All thres steps were ivllowed
by the recursion sequence, LMc{LMe).

This completes our outline of the method of substitution as «
routine for discovering »roofs in symbolic logic. The method may be
viewed as an information process that is composed of a conslderable
number of more elementary information proeesses arranged to operate
in highly conditional ssquences. Each of the mein components-<the tesh
for similarity roubting. and the matching routing--is mads up, in tum,
of sub-routines. The test conditions that control the branchings of
the sequences depend in a number of instances upon the om.cameas of
searches through the iheoren memory. Hence, the method of substitution
represents a complex information process in the sense in which we have

defined the term, Combining the two diagrams depicted above, we can
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$1lustrate the hierarchy of the main operations that enter into the

substitution method:

The method is a heuristic one, for it employs cues, based on the
characteristics of the theorsem to be profed, to limit the range of its
search; i£ does not systematically enumerate all proofs. This use of
cues represents a great saving in search, but carries the penalty that
a proof may not in fact be found. The test of a heuristic is empirdicals
does it work?

Moreover, the cues that are used in the method are not without cosb.
For example, in order to limit matching attempis to ® similar" theorems,
theorems must be described and compared. The net saving in ccompuﬁing
time, as compared with random search, is measured by the reduction in
the number of theorems that have to be matched jess the cost of carrying
out the search and compa e for similarity routines. Stated obherwise,
cues are economical only if it is cheaper to obtain them than to
ocbtain directlykthe information for which they serve as cues.

To be sure, we have found a proof for one proposition in Principis:
but how general is the substitution method? On examination of the 67

propositions in Chapter 2 of Principia, it appears that some 22 -
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can be proved by the method of substitution, including for example:
2,01, 2,02, 2,03, 2.04, 2,05, 2.07, 2,10, 2,12, 2.21, 2,26, 2.27. The
. remaining propositions evidently require more powerful techniques of
discovery and proof. It is evident, for instance, that we must employ
the rule of detachment.
The Method of Detachment

" We will describe next the method of detachment, MDt, which, as
its name impiies, incerporates the rule of det.achnien_m The method, 61‘
course, is not synonymous with the rule, but includes also heuristic
devices that select particular theorems to which the rule is to be
applied, |

Let us review the principle of logic that underlies the method,
Suppose that LT must prove _that. expression A is a theorem; and assume
that there are already in the theorem memory two theorems, B and B-.
Then, by application of the rule of detachment to B and B-A; A is de=
rivable immediately.

We can generalize this procedure by combining matching (substituticn)
and replacement) with detachment. Assume that the theoren memory conbains
B" and B?- A'; thet A is obtainable from A' by substitution (and re-
placement); and that B i3 obtainable from B by substitution {and re-
replacement). Then we can construct a proof of A as follows: {1) By
substitution in B", B! is a theorem. (2) Since B'-A® is also a theorem,
it follows by detachment that A’ is a theorem, (3) By substitution in |

A's; A is a theoren.
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This settles the problem of constructing a valid proof by the
method of detachment., From the standpoint of the discovery of a proof
employing this method, the trick lies again in narrowin; down the
se:éréh for Bi-+A? and B'.", ‘ so that these do not have to be soughf; through
a very large scale trial-and-error search and substitution program.

Structure of the Detachment M@_@_o The basic structure of the
detachment method is quite similar to that of the substitution method,
for both methods utilize the same basic operations. The first two
segments of the detachment method, MDt{SmV) and MDt{SmCt), carry out
searches for similar expressions, in a way that will be indicated more
precisely below. The next segment, MDt(Mc), carries out a matching of
any expression so found with the theorem to be proved. If the matching
is successful, a new problem is created by the segment MDt(F), This
problem is then attacked, in the final segment, MDt(MSb}, by 4he method
of substitution,

Again, designate by A the expression to be proved. In MDt(SmV)
we search the theorem memory for theorsms whose pight sides are similar
(by the test CSm, described previously) to the ujiele expression Ao If
we find such a theorem (call it T), we go to segment MD%t(¥e), and apply
the matching operation to the right side of T and to A. If ws are
successful in the matching, we find the left side of T, MDt(P); and
seek Lo prove by the method of substitution that it is a theorem, MDL{MSL),
For if the left sids of T is a theorem and T is a theorem, then by |
detachment, the right side of T is a2 theorsm. Bubt A can be obtzined from
the right side of T by substitution, hence is a theorem. (Note that a

check is made to see that T has— for a connective.)
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Contraction. If the detachment method fails to find a proof in
the manner just described, a new attempt is made by means of the
second segment, MDt(SmCt), which conducts a new search for theorems whose
right sides are similar to A, but employing a different eriterion of
similarity from the one we have used thus far, If such a theorem is
fanﬁd, the method proceeds with the matching sagment exactly as before.

To sée what is involved in this generalized notion of similarity,
let us consider tﬁo "ejfcpressions, A and AY, with different descriptions.
If A has more levels and vériable places than A, it is still possible
t.!;at A is derivable from A? by substitution--specifically, by substie
t.uting appropriate migcular expressions for the variables of A For
,e:;ample, take as A the expression:
2,06 7 peq ot QF % POT
' for which we have DL(2.06) = (2,2,2), DR(2.06) = 3,3,4); and take
as A’ the expression:
A? ? a o bec
for which we have DL(A?) = (1,1,1), DR(.?) as (2,2,2).

If in A! we substitute peq for a, g+ for by sud por for ¢,
we obtain 2.06. Operating in the reverse direction, if we gonbrach
2,06 by making the inverse substitutions, we obtain A°. We can therefors
refer to A as "2,06 viewsd as contracted."

Since the purpose in searching for similar theorems is to find
appropriate materials to which to apply the matching roubine, there is
no reason why we should not use this more zeneral notion of similarity

if it proves effective in finding materials that are useful.
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In general, what parts of an expression sh.uld be considered as
wits in the search for proofs is not a “given" for the problem solver.
LT makes an explicit decision each time it looks for similar expressions
as to what subexpressions will be taken as units. In contracting 2.06,
a decision has been made that the elements p, q, and r are too small,
and that more aggregative elements, e.g., (p= q) = &, should be
perceived as units.

Examinstion of the routines for describing expressions (NH, NK, M)
will reveal that these routines in fact count unitg rather than
variables. Nommally, the variables are the units used in descripiion,
for VV precedes CSm in every program except MDt, In the latfer pro=
gram, however, it is sometimes uséful to view expressicns as coniraclted,
by means of VCt.
| Example of Proof by Detachment. To illustrate the methed of
detachment, let us carry out explicitly the proof of 2,06:

2,06 ?  Ptg o*t QOF ., pPOr

The reader may verify that this theorem cannot be proved by
substitution in the axioms and sarlier theorems, Moreover the detache
ment method without contraction will also fail, for there is no theorem
whose right side is similar to 2,06, However, we have already seen
that when we contract 2,06, we obtains
Al ? a . b=e
where peq has been contracted to g, gor to b, and per to ¢, ile aow
have DL(A') = (1,1,1) and DR(AS) = (2,2,2), descriptions that are
jdentical with the descriptions of the subeexpressions of the right
side of" 2,04, |
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2,04 ! A2, B+C:2:B=,A=C

AS a*.b=e

Having selected 2.04 by use of the routine MDt(Smlt), we now procesd

to mateh its right side with 2,06 in segment MDt(Me):

2,04 ‘A = B - c o032 B -+, A - C

2,06 ? TPt . @ . PT

2,047 I ger  ,®T Peg o PP oD, Ped ot QP o POr
We have now created a new problem to replace the original onet

to prove that the left side of 2.04° (the pa}t underscored) is a

theorem, We apply the method of substitution, MDL(MSk). The search

of the theorem memory discloses 2,05 to be similar to the left side of

2.04', and we proceed to match them:

2.04°L ? QT o0t PHg o PP

2,05 I A+B .z CoA o+, O+B

It is easy to see that with the substitution of q for A, r for

"B, and p for C, the matching will be successful. Hence we have B (2.05

with the indicated substitution), and B<A (2,04°), from which A (2.06)
:ollbws by the rule of detackment.

. The dia ;ra%m beloi& summarizes the principal routines incorporated
in the method of detachment. A comparison of this diagram with the
one for the substitution method shows clearly that both methods resh
on the same component processes, with minor mdii.fications and new
combinations and conditions, The sole new process involved in de:*;gc!mn
ment is the viewing of theorems as contracted. ’

w

et }\&

CSm
LHe
¥sb”

MDt



The Chaining Method
A number of expressions that do not yiseld to the method of
substitution can be proved by the method of detachment, We shall add
an additional method, however, to the repertoire availabls %o LT, We
shall call this method ggainix;xg, MCh. Like the methods previcusly deaeribed,
chaining involves heuristic procedures which u;e shall consider first.
Theorem 2.06, which we have just proved, embodies one form of
the principle of the syllogism (2.05 is another form of this principia).
Now suppose Ty, (peq) is a true theorem, and Ty, (a=r) is ancther trus

theorem., Theorem 2,06 is of the form:

where E is (p-r), an expression not known to be true., By detachment,
from ! T, and ! () oosToeE, we get § Tp<E. By a second detachment,
from § T, and § TyoE, we get ! E. Hence, if we know peq and Ger £0
be true, we can construct a _proof of per by meens of two detachments
with the use of 2,06, Instead of carrying through this derivation
explicitly in each instance, we simply construct a program that makess
direct use of the transitivity of syllogism., This proof method iz
the basis for chaining.

Suppose that we wish to prove A<C. We search for a2 theorem, T
(with = for a connective) whose lefi side is similar to A, using the
segment MCh(SmF), We match the left side of T with A, MCh(¥oF), and
if we are successful, we have then proved a theorem of the form B335 o
fdr.‘r, as wadified by matching, is of this fom, We now conztruct,

by segment MCh(P), the expression B+C; and sttempt Lo prove this



expression b, substitution, MCh{MSb), II we are succeasfil, we now
have a chain: A<B, B+C. Then by syllogism, as indicated above, we
obtain A+C, the expression we wished to prove.

The procedure Jjust descrabed is cheining forward. Alternatively,
we may chain backward. That is, to prove A+C, we may search for a
theorem of the form BeC; then try to prove A<B by smbstiﬁa%;ifhim@

Proof by the chaining method is illustrated by:

| 2.08 2 p=p |
A search for theorems that have left sides similar to 2.08 yields 1.3,
2,02, and 2;070 The latter is:
2,07 i P o p¥P

If we take 2,07 as.the (A+B) of the schema given above, then
B is (pvp). Two theorems have left sides similar to B: 1.2 and 2,01,
An attempt to match the left side of 2.01 to the right side of 2,07 will
be wnsuccessful, but the matching is immediate with 1.2t
2,07 I p o DPVD '
1.2 ! PVP o P
Hence we can take 1.2 as ﬁhe (B+C) of the chaining method. We now
form (A+C) by joining the left side of 2.07 to the right side of 1.2
by < o The result is 2.08: |
2,08 § pot P

‘I‘he. chaining method is summerized by the fc»llit.owing, diagram, which
- ahdws that the method again makes use of tests for similarity, mebching,
aﬁd substitution: | ~

Cam

IMe e MCh

s
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The Executive Routine

We have now introduced a set of metheds that, Jointly, ave beslieved
to be sufficiently powerful to prove in sequence the Theorems of Gh:;’xp‘i:»e;r" 2
of Prineipia. In fact, proofs have been constructed for these theorsms
by hand simulation of the procedures outlined hersay

snd a hand simulation hes algs been

carried out by Mr. Kalman Cohen; using a somewhat more slaborvate progran,
of the proofs of the theorems of Chapter 3, Extension of these mebhods
to the predicate calculus is, of course, another matter,

It remains to complete our specification of LT in two directiong=—
first to assemble the three methods that have been described into a
coherent program; second, to show how the information processes In
terms of which LT has been describacl here can be specified precisely in
terms of the elementa-y processes listed in the previous sacbion of
this paper. The latter task is cariried out in detail in Sschion f’s‘.,i?ii;j
We will turn our attention here to the former, uhich is embodied in
the executive routine, Ex.

In its first segment, Ex(R), the execubtivs routine reads a new

expression that is presented to it for proof, and pleces it in &

83
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working memory,t* In the next three segments, Wz{MSb), Ex(MDk}, and
Ex(MCh), successive attempts are made to prove the expression by bhs

methods of substitution, detachment, and chaining, respectively. I€

1L

Certain segments of Ex, in particular Ex(R), Ex(WP), Ex{ST) and
Ex(WNP), are not written formally 1n Secticn III in terms of the prinitives
but are simply indicated by parenthesss. It wowld be rather siuple to
formalize them, but this would further lengthen the deseription of the

program.



a proof is obtained by one of these msthods, the executive roubing
writes the proof, Ex(WF); and stores the zlewly«q::mwefi theorem,; afbter
changing all its variables to free varlables, as & theorsm in the
theorem memory, Ex(ST).

To explain what happens if the thrse methode are mwmsuccessivl,
we have to take up some details that wers omitied above. These have o
do with the creation of subsidiary problems and with sbop rules.

Subsidiary problems. Both detac ment and chaining are Lwo=step
methods. Suppose we wish to prove &, In detachment, we tiy to fiad
a theorem, B<A, and if we are succzssful, we then try to prove B, The
task of proving B we may call a gubsidiary problem.

Suppose we wish to prove a-b, In chaining, we try to find & theoram,
a+c, and if we are successful, we then try to prove c-b, The %ask of
proving ¢c*b is also a subsidiary preblee.

In both the detachment and chaining methods, only the method of
substitution is applied to the subsidiary prebiem. I that method fadls,
failure is reported for the main problem. Buh before conbrol is shifbed
back to the exescutive routine, the main e¢leamsnt of the subsidlary

problem is stored in the ppobler lisk in the storage memory. {The

HAARE S R A T
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operation that stores the problem in ths problem list is the cperabicn
SEN that can be found in segment MY¥:{P) and segment HOh{P).)
When the three methods have failed, the suscubive roubling storses

the ression in the inactive yproblem list, @ zoes to the problon
& 3 2w &

3
G
[}
g-
5]
;:.
s
-

list, P; and selects from that lis% the problem whose expr

‘\s

a certain sense, the simplest-specifically an expression with ths swallest

possible number of levels, K, Ex{CKX). It erases the new subsidiary
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problem from list P; oha s to meke out

one previously attenpizi, Ex{(CX); and $hen Lrlis Lo oo o
problem by the methods of detachment and chain
repeated until some subsldiary problas is asdve
main problem is also colved), or unbil ne probiona o A

list, or until the other stop ruie, to be de: serile

@
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In the latter two caszcg,the roubine reporbs thai

the theorem, Ex(WNP).

The check to prevens cuplisabion of svhaldlavy Trobiems,

is handled as follows: Mo ouch problem that Lo sele

by 2x(CK), a check is wade, by LelCi), against all expy

active vroblem list, (, snd if %ae now probilom du
¥ 5 i

e
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found there, it is drupped. The malu operallon ol Lthls

*
x !

applies the same basic tests of identl

™ - % ’g %
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in the matching program, bub does no’ rodify the ex Lo malke

thew match.

Stop Rules. Since all proof methods may In
SRS NI A L

pression givento LT iz a genuine theorem. and ter

-

the exscutive roubine nseds a step role, One obop mile L3 prow

&

the exhaustion of lis® P, but thers is no guaranbes that the 1ist e

ever be exhsusted. A& sscond sbor rule is provided by © neratlions |

PO )

measura the total arguut of "work" thet has beon

P B gk d eainde oy o
done in sbiompting

e c———
1 There is ne neec o sthempt Lo prove bhe sibsidia
substitution, since 2a unsuccessful subsil pubion ehfenpt was mace
immedi ately before the expression was stoprsd i the subsidiary problon
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to prove a theorem, and that terminate the prograzm with a "no proof?
report when the total work exceeds a specified amount, The first
operation in the substitution routine, NAW, simply fallies one for
each time the routine is used. This tally is kept in a special loca-
tion in the storage memory. The executive routine, just before it
seeks a new subsidiary problem, checks the cumulative tally in this
register, Ex(CW), and if the ta2lly exceeds a given limit, terminates
the program. Since the substitution routine is used in each of the
methods,the number of substitutions attempted seems to be one rea-
sonable index of the amount of work that has been dene,

This stop rule operates as a global constraint on the total work
applied in trying to prove a single theorem. The rule does not
govern the direction in which this effort is expended. The latter
is determined by the priority rule previously described for seleciing
subsidiary problems from the problem memory and by the obher elements
of LT's program.
learming Procssses

The program we have described is primarily a performance program
rather than a learning program. Fub. although the program of L%
does not change as it accumnlates experience in solving problems,
lzarning does take place in one very impertant respect, The program
shtoves the new theorems it proves, and these theofﬁms are then availe

able as building blocks for the proofs of subseque:t theorems. Thus:
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in the theorems usei as examples in this paper, 2,06 was proved with
the aid of 2,05 and 2.04, and 2,08 was proved with the aid of 2,07.
Without this form of learmning it is doubtful whether the program would
prove any but the first few theorems of Chapter 2 in a reasonable

number of steps,



