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AN INDUCTIVE INFERENCE CODE EMPLOYING DEFINITIONS

R. J. Solomonoff

ABSTRACT

A new inductive inference method has been described in which the
a priori probability of a sequence of symbols is computed on the basis of
the lengths of various code strings that could be used to describe that

sequence to a universal Turing machine. -

A coding method for a string of symbols that form a Bernoulli sequence
has been described in some detail. The present paper describes a code that
is to be used when there are intersymbol constraints. This coding method
defines certain special code symbols to be equivalent to certain substrings
of symbols in the original sequence. The original sequence is then more
economically coded using the special symbols. Both the cost of defining a
special symbol, as well as the economy to be gained in using it, are

counsidered in the decisions of what definitions to make.

To estimate the problems of implementation, a computer program was
written to apply this technique to analysis and prediction in natural lan-

guages. Other applications are also discussed.
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AN INDUCTIVE INFERENCE CODE EMPLOYING DEFINITIONS

R. ]J. Solomonoff

I. INTRODUCTION AND SUMMARY

A very general inductive inference method has been described
(References 1 and 2) in which an a priori probability may be assigned to any

long sequence of symbols.

The method counsists of coding the sequence in a type of binary code, in all
possible ways. The probability of any particular code is then 2‘N, N being
the number of bits in its binary representation. The a priori probability of the
sequence is then the sum of the probabilities of all of its codes, suitably
modified by considering possible future continuations of the sequence, as well

as factors to insure convergence.

The conditional probabilities of various possible individual symbols
following a given sequence of symbols may then be obtained by taking the
normalized a priori probabilities of sequences that consist of the given

sequence, to which the various possible symbols have been concatenated.

In Reference 3, a coding method was described for a Bernoulli sequence —

a sequence in which there were no probabilistic intersymbol constraints.

The present paper deals with sequences of symbols such as Markov chains,
in which the probability of a particular symbol occurring at a particular
point depends on the nature of symbols in the sequence that are close to it.

If the entire sequence is very short, only very local interactions are




considered. For longer sequences, more distant interactions are automatically

considered.

Basically the coding method consists of defining certain sequences of two
symbols — such as ab or db or ae— to be represented by special single
symbols, such as @, 8 or y. Using these newly defined symbols, the original
sequence can be rewritten more compactly. However, the gain in compactness

! may be offset by the amount of information needed to write the definitions of

the sequences defined.

The coding method of inductive inference gives a unifed measure to the
"increase in compactness” brought about by the introduction of a particular

definition, and includes the cost of defining the new symbol used.

3 The method to be described begins by counsidering all possible pairs of
symbols. The pair for which the total decrease in "coding cost” is maximum
is then assigned a special symbol, and the original sequence is rewritten using
this special symbol. At the next stage all pairs of symbols (including the
newly defined speciai symbol) are examined, and the pair for which decrease

in coding cost is maximum is assigned a new special symbol. The sequence

that is the result of the last rewriting is again rewritten using the new

~symbol.

This process is repeated again and again until it is no longer possible to

find a new definition that results in a further reduction of "coding cost."

From the compact code that results we are able to find the a priori
probability of the original sequence. This a priori probability can then be
used to find the conditional probability of a symbol occurring at a particular

point, in view of the nature of the symbols occurring before it in the sequence.

Section II describes an "intermediate code” in which new symbols are
defined. Each of these new symbols represents a sub-string of symbols of the

original sequence.

L9 ZTB
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Section III shows how a priori probabilities are to be assigned to these

intermediate codes,

Section IV discusses the use of these codes for computing approximate
probabilities. A "hill-climbing" method is described by which codes of high

a priori probability may be found.

Section V discusses several approximation formulae for the increase in

a priori probability associated with each possible step on the "hill."

Section VI discusses the characteristics of the computer program that was

written to implement the hill climbing routine of Section IV.

Section VII gives several possible applications of the computer program.

-
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II. AN INTERMEDIATE CODE EMPLOYING DEFINITIONS

In the present paper we shall consider only definitions that involve the
concatenation of two symbols. Since either or both of the symbols may in
turn represent a concatenation of two symbols it is clear that we can in this
way define sequences containing any desired number of symbols of the type

used in the original uncoded sequence.
Suppose we have the sequence
CABCBABBABABAAB. (1)

Clearly, if we define the symbol o to represent the sub-sequence AB we can

write (1) mnore compactly as
CaoCBaBaaAa. (2)

However, in order to include all the information in our intermediate code,
we must include the definition in our description of (1). A more complete

code would then be

AB, CaCBaBaacAca. (3)

Here the comma is a special symbol. It occurs in every intermediate code
once and only once. There are an even number of symbols before the comma,
and adjacent pairs of these symbols are the definitions of the respective

Greek letters.
The intermediate code
ABaA,CBAaapBCAAB 4)

would represent the fact that « is defined to be AB, and 8 is defined to be
«A in the sequence

CBAaaBCAAR.

ZTB
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It is clear then, that the sequence represented by (4) is

CABAAABABABACAAABA. (5)

TB -5 -
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III. ASSIGNMENT OF A PRIORI PROBABILITIES TO INTERMEDIATE CODES

To obtain the a priori probability of the sequence (5) we will represent its
intermediate code (4) by a (usually large) positive integer in a manner that

is basically similar to the coding method described in Reference 3.

Let us first number the symbols of (4) so that we may more easily discuss
them.
ABC,ABa A,CBAacap C A AZB (6)
123456789 101112131415

The symbols "ABC," have been written before the sequence proper as we

have done in Reference 3.

In coding the first symbol of (6), we assign an a priori probability of 4 to
the symbol A, This is because there are 4 previous legal possibilities for that
symbol, and only one of them is "A", The symbol "," in this position would

indicate that no definitions were to be made in this intermediate code.

In coding the second symbol,"," is not a possibility since there must be an
even number of symbols in the ""definitions" section of our code. The legal

symbol choices occurring before the second symbol are four innumber: A, B, C

and A. Of these only one is B so we assign an a priori probability of  to B.

Since our first definition is now completed — the definition of @ — we
have a new symbol that is now possible. So (6) must be rewritten as
oABC,ABaA,CpAa o BC A A . )
123456789 101112131415
In coding the third symbol, "," and "a" are both legal, so we have seven

legal possibilities, of which only one is «, so we obtain a priori
probability 4.

To code the fourth symbol we have seven legal possibilities (since "," is

not legal here). Of these, two are A's, so we obtain a priori probablhty +.

ZTI
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In coding the fifth symbol we must rewrite (7) since we have completed the
definition of B8, and so g is now a possible choice.
BaABC,ABaA,CpAa a g C A A B. (8)
123456789 101112131415

For the fifth symbol there are just ten legal previous possibilities. Only
one of them is "," so its probability is .

For the sixth symbol, and all subsequent symbols, "," is no longer legal
since it can occur only once in the code. Therefore, the probability for the

sixth symbol is ¢.

The probabilities of the seventh and eighth symbols are obtained straight-
forwardly — they are - and 1, respectively.

The ninth symbol brings up an interesting and very important point. If we
have made the definition @ = AB, then in our subsequent code, the symbol B
should never follow A, since it would be more economical to rewrite the pair
as «. In general, every definition that we make imposes some constraints on

which symbols may follow which in the subsequent code.

In the present case, the ninth symbol cannot be B or ",". The resultant
probability is then .

The tenth symbol cannot be A since it follows «, and 8 = «A has been

defined, The probability assigned to the tenth symbol is therefore ¥ .

The coding of the subsequent symbols illustrates no new points and will
not be discussed further.

The final a priori probability of the sequence up to and including the
tenth symbol is the product of the individual probabilities that were

described, i.e.,

"TB ' -7 -
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IV. USE OF THE CODES FOR PREDICTION

Suppose we have a string of symbols which we will denote by T and we
want to know the relative probability of the symbol a, rather than b, being
the symbol that follows T.

Equation 5 of Reference 1 computes this probability ratio by considering
all codings of all possible continuations of the sequences Ta and Tb. In
general, a given sequence can be coded in many ways. Various sets of
definitions can be used, and they can be defined in different orders — e.g.,
AB can be defined before BC, or vice versa. Also, with a fixed set of
definitions, i@ is often possible to code a sequence in several different ways.
As an example, suppose we have defined o= AB and g = BC. Then the

sequence ABC can be coded as either aC or AB.

An approximation to the desired probability ratio can be obtained by

considering only a few codings of only a few possible continuations of these
two sequences. Greater accuracy will, of course, be obtained if more codings
and more possible continuations are considered, and if the coding methods

used are of relatively high a priori probability.

A computer program has been written for prediction in which only the
psequences Ta and Tb are coded. Possible future continuations are not
considered, An attempt is made to find codes of very high a priori
probability by a process of "hill climbing" — 1i.e., the original sequence is
used as an initial code and improvements are made in this code so as to
increase the a priori probability. This results in a new code which is in turn
improved. This process of improvement continues until no new improvements

can be found within the set of improvement types being considered.

In the particular computer program that was used, each "improvement".
consists of devising a new binary definition and rewriting the previous

intermediate code using this new definition. If there are d symbol types in

-8 - ZTB
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the original sequence, and c definitions have been introduced thus far, then
(d + c)? possible definitions are considered. The definition that results in the
largest increase of a priori probability of the intermediate code is used for
recoding. Next, (d + c + 1)? definitions are considered and the optimum one

is selected.

The process of determining how much the introduction of a given definition
will increase the a priori probability of a code, has been studied at length.
Several approximate formulae have been obtained for the resultant change in
a priori probability. The approximations are easily implemented by a
digital computer, so that with an initial symbol string of about 1000 symbols
it takes only a few minutes for the IBM 709 computer to find as many as 100

-

new optimum definitions.




V. APPROXIMATION FORMULAE FOR HILL CLIMBING

In general, there are two situations in which it is useful to define the

ordered pair, AB.

In the first kind of situation, we have a long uncoded sequence in which
the subsequence AB never (or very infrequently) occurs. Defining the pair
AB will then increase the a priori probability of the resultant intermediate
code. This is because of increased knowledge of symbols following A's due
to the fact the B's are impossible there. This knowledge results in greater
probabilities being assigned to the symbols that actually do follow A in

the intermediate code.

In the other possible situation, B follows A almost whenever A occurs.
We can then increase the a priori probability of our intermediate code by
defining AB.

If £ A and fB are the respective relative frequencies with which the

symbols A and B occur in a long, uncoded sequence, and f is the relative

frequency of the adjacent pair, AB (relative frequency is inAfll three cases
measured with respect to the total number of single symbols in the sequence),
_then the ratio of total increase in a priori probability of the intermediate
code resulting from our formulating the definition « = AB, is roughly

approximated by

kaB fp - 1fp 2
fAfBexp T( fAB -1 (9

Here, k is the number of symbols in the original sequence and so kf, . is the

AB
number of times AB has occurred.

We will want to define o = AB, if this definition gives us an intermediate

code of higher a priori probability — i.e., if expression (9) is greater than unity.

- 10 - ZTB
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It is of value to regard expression (9) as composed of two factors. First

there is the factor f A fB’ which is the cost (in probability) of writing the

definition AB. Next, the factor
ap (fA'fB _ )2
2 f
e AB : (10)

which tells us how much benefit is obtained from the definition's increasing

the probabilities of various symbols.

In (10) note the presence of the expression

(fAfB_ )2
faB

This indicates that if there is any constraint between the symbols f

A ang fB’
so that fAB # fA- fB (i.e., A and B are not "independent"), then, if our
sequence is long enough (i.e., k is large enough), expression (10) will
become very large — so that we will save more than we lose by defining

o = AB.

We may write (10) as

2\ f

e AB

Here it becomes clear that no matter how much A and B appear to be
dependent (i. e., that fAB differs very much from fA- fB), it will not be
worth while to define o = AB unless the sequence is long enough to give us
an adequate "sample size" (i.e., k is large enough). Conversely, even if
A and B are but very slightly dependent, it will be worth while to define
o = AB if k is large enough.

Also note that if A and B are rather uncommon symbols (i.e., f A and
fB are small) the cost of defining AB is very important (i.e., f A fB is much

ZTB - 11 -
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smaller than unity), so that the other factor, (10), has more "work" to do. This
corresponds to the general epistemological principle that if a regularity is
a priori very unlikely, we require much more empirical evidence to convince

us that it is indeed a bona fide "regularity."

In general, in the "coding method of inductive inference,” it will often be
possible to divide the coding effects of a supposed "'regularity” in a body of data into
a part that corresponds to the cost of defining the regularity, and a part that
tells how much we increase the a priori probability of the code by using this
regularity in recoding the data. In equation (3) these parts are exemplified
by f AfB and by expression (10), respectively.

It should be noted that the approximation expression (9) does not work well
for very small values of £ AR’ and no conclusions should be drawn about this

case from this particular approximation.

Expressions (11) and (12) are more exact expressions for the ratio of
increase of a priori probability of an intermediate code that results from
defining @ = AB. These expressions were the ones used in the computer
program. Expression (11) is for the case A #B, and (12) is for the case
A =B - ie., o = AA. Although both expressions are approximations, they

work very well, even when NAB =0 or NAA =0,

~

AB

k+d+c—NB+1

N, 52!

N,-N
(Np-Np pt ) (Ng=N, 1)1 (k+d+c-D! N, ) (d+30)(k+d+c—N +3) A UAB

N,! N1 (k+d+c-
A B :
' (11)

AA
NA! (k+d+c-N, , +2)! k+d+c-N,-1

(Ny-2N, , +2)I N, 1 (k+d+c-1)I (d+30) (k+d+c-N +3)NA'2NAA
A

Al (12)

k is the total number of symbols in the original sequence.
d is the number of different symbol types in the original sequence.

¢ is the number of definitions that have been introduced.

-12 -
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N A is the number of times the "A" occurs in the code sequence (or
original sequence) being recoded.
NB is the corresponding number for "B".
N AB is the corresponding number for the subsequence "AB".
N AA. is the corresponding number for the subsequence "AA",
Here N AA is defined to be the largest number of non-overlapping "AA's"

that can be found in the sequence of interest.

In expression (11), the factor

k+d+c—NAB+3 NA_ NAB
KFdvc- N, +1 (13)

-

gives the amount of increase in a priori probability due to symbols follow'ing
A having somewhat greater probability than before — since it is now known
that B cannot follow A. This factor is but an approximation, and assumes that
this increase in probability is the same for each of the N A N Ap Occurrences
of "A" in the new code. The rest of expression (11) is exact however.

Corresponding remarks are true of expression (12).

- 13-




VI. THE COMPUTER PROGRAM

A computer program has been written in order to study the practical
problems of implementing the "Hill Climbing" procedure described in
Section IV, and to estimate expected computing times. The program has
not been run. The input data consists of a sequence of alphabetic symbols.
The output consists of (1) an ordered set of definitions of ordered symbol
pairs, (2) the intermediate code of the original sequence, using these defi-

nitions, (3) the a priori probability of that code sequence.

We need only the third of these outputs to make probability estimates.
Suppose that for the string of input symbols designated by a, the machine
gives us a code whose a priori probability is M(a). If the symbols used in
the original sequence are A, B and C, then an approximation to the
probability that A will be the next symbol to follow the sequence a, is
given by:

M(aA)
M (aA) + M(aB) + M (aC)

(14)

Here, aA is the concatenation of a and A.

The program was written almost entirely in Fortran II for the IBM 7 09 or
7090. The only non- Fortran subroutines that were used were rather simple
input and output subroutines. Extensive use was made of tables to implement

formulae (11) and (12) as rapidly as possible.

Most time consuming operation of all was the comparison of the results of
using each of the (c + d)? possible definitions, and selecting the "best” one.
An enormous amount of time was saved by noting that for almost all AB
= 0. Furthermore, both (11) and (12) are almost monotonic in
= 0, This makes it possible to find an AB for which (11)

pairs, N AB

NA and NB for NAB
is maximum over the set of AB for which N = 0. This can be done without

computing the value of (11) for many AB pairs. We need then use formula

-14-
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(11) to find the best AB for which N AB # 0 and compare it with the best AB

for which NAB =0,

This particular trick works very well only if the original sequence is not

very long. Specifically, if
k< (d+c)? (15)
where k, ¢ and d are the same as in expressions (11) and (12).

If (15) is not true, some slight modifications of the above technique may

be desirable.

If (15) is true, then the computation time to climb c¢ locally optimum steps

up the hill (i.e., to find c new definitions) takes the IBM 709 about ck
milliseconds plus about 5 minutes for compiling. For k = 1000 and ¢ =100,
this amounts to a total of about 7 minutes of computer time. Using the 7090

reduces the time required to about one fifth of this figure.

If (15) is not true and the computation technique is unmodified, a
corresponding time would be c(c + d)2 milliseconds plus 5 minutes for
compiling for the IBM 709 .

For problems in which k, ¢ and d are much larger, there are various
techniques that can be used to decrease the computation time. If (¢ + d)? is
greater than the number of words available in the core memory, then the
program must be modified somewhat. It is likely that c +d = 1000 can be
dealt with by using a core memory of 32000 words without radical

reprogramming,

-15-




VII. APPLICATIONS OF THE PROGRAM

Only a few of the more important applications will be listed.

First, and probably most important, the program will give an empirical
check on the effectiveness of the coding method of inductive inference. One
way to do this is to compare its prediction accuracy for English text, with
prediction accuracy of a more conventional method, using known digram and

trigram frequencies.

Another check would be to code a large body of English text and obtain a
large set of definitions from this coding. Then code a new corpus of English
text using' the same set of definitions. The redundancy obtained from the two
codings should be about the same. If they are, this will verify the estimates

made of the a priori probabilities of various defined sub-sequences.

This routine could be used for a kind of literary or musical detective work.
Suppose one has a body of text by an author whose identity one wishes to
establish. It is known that the author is one of three people, and samples of
the writings of each of these suspects is available. The text by the unknown
author is coded and a set of definitions is obtained. This fixed set of
definitions is then used to code the works of each of the suspects. The most
ﬁkely suspect is then the one whose known writing has a redundancy matching
most closely that of the text of the unknown author. The same sort of

analysis is applicable to musical compositions.

"Monte Carlo music" can be written that is "similar" to music in a small
sample of compositions analyzed. The present technique makes better use of
the available data than do other methods for constructing ""Monte Carlo music."
This makes it possible to recognize more complex sequences in the data than
would be warranted if ordinary n-gram frequencies were used in the

conventional way.

- 16 - ZTB
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Given a sequence of Morse Code dots and dashes without the spaces
between letters indicated, it may be possible to use the present routine to
discover the letter groupings, and some short word groupings. A similar
problem is the discovery of roots, prefixes and suffixes from a large English

text.

The prediction routine could be used to make a penny matching machine

of perhaps greater effectiveness than any such existing ma chine.

To some extent, the present computer routine could learn to recognize the

legality of various Roman numerals.

The advantage of the present method of prediction over conventional
methods using the frequencies of n-grams of fixed length, is that the present
method is able to propose rather complex definitions and evaluate their
significance on the basis of a relatively smaller amount of data. Using the
same amount of data, the new method should be able to make better

predictions than more conventional methods.

_17_
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