
TR IDSIA–16–03, revision 2.0; 30 October 2003

Progress In Incremental Machine Learning

Ray J. Solomonoff

Visiting Professor, Computer Learning Research Center
Royal Holloway, University of London

IDSIA, Galleria 2, CH–6928 Manno–Lugano, Switzerland

rjsolo@ieee.org http://world.std.com/˜rjs/pubs.html

Abstract

We will describe recent developments in a system for machine learning
that we’ve been working on for some time (Sol 86, Sol 89). It is meant to
be a “Scientist’s Assistant” of great power and versatility in many areas
of science and mathematics. It differs from other ambitious work in this
area in that we are not so much interested in knowledge itself, as we are
in how it is acquired - how machines may learn. To start off, the system
will learn to solve two very general kinds of problems. Most, but perhaps
not all problems in science and engineering are of these two kinds.

The first kind is Function Inversion. These are the P and NP prob-
lems of computational complexity theory. They include theorem proving,
solution of equations, symbolic integration, etc.

The second kind of problem is Time Limited Optimization. Induc-
tive inference of all kinds, surface reconstruction, and image restoration
are a few examples of this kind of problem. Designing an automobile
in 6 months satisfying certain specifications and having minimal cost, is
another.

In the following discussion, we will be using the term “Probability” in
a special sense: i.e. the estimate given by the best probabilistic model for
the available data that we can find in the available time.

Our system starts out with a small set of Problem Solving Tech-
niques (PSTs) and a simple General Conditional Probability Distribution
(GCPD). When the system is given a problem, the description of this
problem is the “Condition” for the GCPD. Its output is a probability
distribution on PSTs - the likelihood that each of them will solve the
problem by time t. It uses these PSTs and their associated probability
distributions to solve the first problem.

Next, it executes its Update Algorithm: The PSTs are modified, new
ones may be added, some may be deleted. The GCPD is modified. These

1

changes incorporate into the system, information obtained in solving re-
cent problems and prepare it to solve harder problems.

The next problem presentation and the system’s solution is followed
by the corresponding update and so on. After the nth update, the system
is usually able to work problems more difficult than the nth. Giving the
system a suitable training sequence of problems of progressive difficulty,
makes it possible for the system to eventually solve very hard problems.

One critical component in the system is the initial set of PSTs. These
include Levin’s Universal Search Algorithm (Lsearch). Simple Lsearch is
only practical for simple problems, since its solution time is exponential
in the complexity of the solution. In the update phase, we modify the
probability distribution that is used to guide Lsearch. This effectively
reduces the complexity of the solutions of initially difficult problems, so
that Lsearch becomes feasible for them.

The update algorithm is another critical component. It has been de-
signed to facilitate “transfer learning”, so that the system can utilize any
similarities between problems in the same or disparate domains. It has
been possible to express this algorithm as an inductive inference problem
of a type the system normally solves - so we can simply ask the system to
update itself as one of its regular problems. In the early phases of learning,
we use a relatively simple update algorithm. Later, the accumulation of
data enables us to use a more complex update algorithm that recognizes
a broader range of regularities.

Perhaps the most critical component of all is the training sequence
- To devise a sequence of problems so that each of them challenges the
system to devise new concepts to solve it, yet keeps the challenges within
the capacity of the machine. For PSTs that use simple Lsearch, this is not
hard to do. It is always possible to get a good estimate of the time needed
for the system to find a known solution to a problem. For Lsearch in which
the guiding probability distribution is modified during the search, this is
not so easy and designing appropriate training sequences can become as
difficult as teaching people!

Consider two extreme approaches to designing intelligent machines:
In CYC, Lenat (Len 95) gives the machine much factual information

in a very direct manner. The system’s learning capability enables it to
“interpolate”, to “fill in” the knowledge it was not explicitly given.

In our system, the amount of information directly inserted into the
machine is kept as small as we can afford. Almost all knowledge is obtained
by inductive inference from the sequence of problems given to it by the
trainer.

If successful, CYC will have a large, encyclopedic knowledge base
which it will use to solve problems. On the other hand, if successful, our
system will be very good at discovering new knowledge based on fewer
facts and inductive integration of those facts. It has the Feynman-like
approach of wanting to find its own way of understanding the data.

The system’s generality invites comparison with Genetic Program-
ming. We will discuss differences in the two approaches to optimization

2

problems, and suggest a way in which Genetic Programming might be
made a part of the present system.

Another way to look at the system is to think of it as a “Wrapper”
system - a system that modifies its parameters in view of its experience
with earlier problem solving. The present system is an “Extreme Wrapper
System” in that - through the Magic of Levin’s Universal Search - it is
possible for the entire system to effectively replace itself by one that is
more efficient.

3

Contents

Introduction: Description of overall operation of system 5

1 Inductive Inference: Detailed Operation of Q,A Induction 6
1.1 Early Training: Operation of system at beginning of Training

Sequence . 9
1.2 Updating: How system is modified after problems are solved . . . 10
1.3 Scaling: Time needed to solve successive problems normally in-

creases very rapidly. How to prevent this 12

2 Inversion Problems: Solution of P and NP Problems 14
2.1 Solution by Lsearch . 14
2.2 How the system uses its optimization capabilities to improve its

update and search methods . 15

3 Time Limited Optimization Problems 18
3.1 Solution by Lsearch . 18
3.2 How improvement techniques for Inversion Problems are applied

to Optimization Problems . 18

4 Universal Distribution on Probability Distributions: Realiza-
tion techniques 20

5 Training Sequences: How to design a sequence of problems to
train the system 21

6 Efficiency of the System 22
6.1 Updating: How much time to spend on updating 22
6.2 Ultimate Limits of System: An argument that there may be no

upper limit on performance of system 23

7 Related Work 23
7.1 Lenat’s CYC . 23
7.2 Schmidhuber’s OOPS . 24
7.3 Genetic Programming . 25

8 State of Research: What has been done, what needs to be done 26

Appendix A: The AZ System for apriori probability assignment 27

Appendix B: A Convergence Theorem for Q,A Induction 30

Appendix C: Levin’s Universal Search Algorithm (Lsearch) 32

Bibliography 33

4

Introduction: Description of overall operation of
system

We will begin with the description of a simple kind of inductive inference system.
We are given a sequence of Q,A pairs (questions and correct answers). Then,
given a new Q, the system must give an appropriate answer. At first, the
problems will be mathematical questions in which there is only one correct
answer. The system tries to find an appropriate function F so that for all
examples, Qi, Ai;F (Qi) = Ai. We look for F functions that have highest a priori
probabilities — that have “short descriptions”. In generating such functions,
we use compositions of primitive functions and of sub-functions that we have
previously defined. Sub-function definition is one of the main methods we use
to get functions with short descriptions.

At first we only define functions that are solutions to problems. Later, we
define sub-functions that have occurred several times in solution functions. We
also define functions that specify contexts for functions.

Another important improvement in prediction is obtained by a set of func-
tions that define classes of problems, so we can use a different kind of prediction
function for each class.

From deterministic prediction we can graduate to probabilistic prediction.
Among other advantages, it allows us to make errors in information given to the
system. At first we will use simple Bernoulli prediction, then the most general
kind of prediction based on Algorithmic Probability.

While each of these improvements/extensions of the system brings new chal-
lenges, perhaps the most difficult design task is the construction of suitable
training sequences for the system. We will begin by teaching elementary al-
gebra — first notation, then solutions of linear, then quadratic and then cubic
equations. After the system has acquired a fair understanding of part of algebra,
we begin to ask questions in a simple kind of English, about topics in algebra
that it is familiar with. It is easier to learn a new language when you already
know one that has many concepts in common with the one to be learned. In the
present case, the common concepts will be the definitions of algebraic entities.

The system described uses a limited form of Lsearch (appendix C) that is
particularly effective for induction problems. For the first Q1, A1 problem, we
use Lsearch to find a function F1(·) such that F1(A1) = Q1, and a1

0, the a priori
probability of F1(·) is as large as possible. In searching for solution to the second
problem, we want a F2(·) such that F2(A1) = Q1 and F2(A2) = Q2 and the a
priori probability of F2(·) is as large as possible. However, after we have solved
the first problem, our a priori probability distribution changes. It includes
the definition for F1(·). As we solve more problems, the relevant probability
distribution used for searching changes in accord with the past solutions.

To solve Inversion and Time Limited Optimization problems we start out
using a technique similar to that for induction. In the case of Inversion problems,

5

we are given a string s and a function G(·) that maps strings into strings. The
problem is to find as rapidly as possible, a string x such that G(x) = s.

Conventional Lsearch searches over functions F (·, ·) that look at G(·) and
s and generate trial x values as output. i.e. x = F (G(·), s) As in induction
problems, Lsearch for Inversion problems uses an a priori probability to guide
the search for a suitable F (·, ·) function. After a problem has been solved,
the solution to that problem modifies the a priori probability for search for a
solution to the next problem - just as in induction problems.

After several Inversion problems have been solved, it becomes possible to
update the guiding probability distribution in a more effective manner. We have
several problems that have been solved, we have the functions that have solved
them and we know how long it has taken to solve each of them. From this data
we can use our earlier Q,A induction system to get probability distributions,
hi(t) for the time it will take for various Fi(·|·) functions to solve a new Inversion
problem. From each distribution, hi(t), we obtain a figure of merit, αi, that
gives an optimum ordering of a trial for its associated Fi function. We then use
these αis to order our trials.

For Time Limited Optimization problems, we use a similar solution tech-
nique. Since induction problems are a kind of Time Limited Optimization
problem, we can use this method to greatly improve our solutions to induc-
tion problems as well.

1 Inductive Inference: Detailed Operation of Q,A
Induction

The problem we are addressing is that of very general probabilistic prediction:
We are given an unordered set of (Qi, Ai) pairs, i = 1...n. We are then given
a new Qn+1. The problem is to find a conditional probability distribution over
all possible An+1. (Here the “i” indices of Qi and Ai are used to indicate Qi

is associated with Ai. The information in the i ordering, however, is not to be
used for prediction.)

The Q’s and A’s can be strings, and/or numbers. The Q’s can be thought
of as questions, the A’s as answers. Qi might be the description of a problem,
and Ai its solution. Ai and Qi might be in inputs and outputs of an unknown
stochastic process. The Q,A pairs in the set need not all be of the same kind and
may be drawn from very disparate domains of knowledge, such as linguistics,
mathematics, physics, biology, or economics. Since we are considering stochastic
models, the data can have “errors” in it — interpreted by the system as “noise”.

We will first give a theoretical solution to the problem, involving infinite
time and storage — then a discussion of various practical approximations.

For the data described above, the probability distribution of An+1 is

6

∑

j

aj
0

n+1∏

i=1

Oj(Ai|Qi) (1)

Here Oj(·|·) is the jth possible conditional probability distribution relating
its two arguments. Oj(Ai|Qi) is the probability of Ai, given Qi, in view of the
function Oj

aj
0 is the a priori probability of the function Oj(·|·). It is approximately

2−l(Oj) where l(Oj) is the length in bits of the shortest description of Oj . Ap-
pendix A discusses the computation of the ai

0.
We would like to sum over all total recursive functions, but since this set

of functions is not effectively enumerable, we will instead sum over all partial
recursive functions, which are effectively enumerable.

We can rewrite (1) in the equivalent form
∑

j

aj
nOj(An+1|Qn+1) (2)

Here,

aj
n = aj

0

n∏

i=1

Oj(Ai|Qi) (3)

In (2), the distribution of An+1 is a weighted sum of all of the Oj distribu-
tions — the weight of each Oj being the product of its a priori probability and
the probability of the observed data in view of Oj .

Appendix B shows that even with a relatively short sequence of Q,A pairs,
these distributions tend to be very accurate. If we use the aj

0 to express all of
our a priori information about the data, they are perhaps the most accurate
possible.

Since we cannot compute this infinite sum using finite resources, we approx-
imate it using a finite number of large terms — terms that in (2) have large aj

n

values. While it would seem ideal to include the terms of maximum weight, it
has been shown to be impossible to know if a particular term is of maximum
weight. The best we can do is to find a set of terms of largest total weight in
whatever time we have available. We can completely characterize the Problem
of Inductive Inference to be the finding, in whatever time is available, of a set
of functions, Oj(·|·) such that

∑

j

aj
n (4)

is as large as possible.
Genetic Programming, using a Lisp–like functional language, (Cra 85, Ban

98) would seem to be a reasonable way to solve this problem. A large population

7

of Oj functions could be mutated and/or recombined with suitable crossover
algorithms using (4) as fitness function. A first glance suggests that while this
may give very accurate probability distributions, it would be much slower than
the system we will subsequently describe. Section 7.3 discusses techniques that
we expect to significantly increase speed of Genetic Programming.

In 1973 L. Levin suggested (Lev 73, LiV 93, LiV 97) a universal method for
solving sequential search problems that can be readily applied to the problem
of finding functions of maximum weight. If there are a small number of simple
problems, Levin’s method (which we will call “Lsearch”) can be a practical way
to solve them. For more difficult problems and/or a large collection of easier
problems, the method is too slow to find Oj functions of much weight directly.
Lsearch can, however, be used as part of a more complex method with a much
more acceptable search time.

One method of this sort expresses the set of Oj being used as a combination
of two types of functions. The first type of function, Ri(Ql), recognizes what
kind of problem Ql is. Associated with each recognition function Ri(·) , is a set
of one or more of the second type of function, P j

i , that solves problems of the
ith kind. For each value of n, (the number of Q,A pairs thus far), there will be
wn different kinds of problems. Usually wn << n , since many problems will be
of the same kind.

There are wn recognition functions, Ri. Each of them recognizes one and
only one problem type. If 1 ≤ l ≤ n then both Ql and Al are known so

i = 1...wn and wn ≤ n.
Ri(Ql) = 1 if Ql is of type i.
Ri(Ql) = 0 if Ql is not of type i.
If l ≤ n the R functions do not overlap i.e.:
Rj(Ql) = 1 AND Rk(Ql) = 1 implies j = k.
The second type of function P k

i (·|·) is a probability distribution associated
with Ri. P k

i (A|Ql) gives the conditional probability (as seen by P k
i) of the

answer A , to question Ql.
If Ri(Ql) = 1 then Ql is a problem of the ith kind, and

ki∑

k=1

ak
i P k

i (A|Ql)/
ki∑

k=1

ak
i (5)

is the conditional probability induced by the set of functions P k
i on the set

of all possible answers A, for question Ql .
ak

i is the a priori probability of the function, P k
i

ki is the number of prediction functions, P k
i for the ith kind of question.∑ki

k=1 ak
i is a normalization factor.

More generally, if Qn+1 is a new problem/question never seen by the system
before, its probability distribution on possible answers, A will be

8

wn∑

i=1

ki∑

k=1

Ri(Qn+1) ak
i P k

i (A|Ql)/
wn∑

i=1

ki∑

k=1

Ri(Qn+1) ak
i (6)

If Ri(Qn+1) = 1 for one and only one value of i , then expressions (5) and
(6) are the same, except that l = n + 1.

If Ri(Qn+1) = 1 for more than one value of i, then (4) gives a mean over
the various kinds of problems Qn+1 seems to be.

If Ri(Qn+1) = 0 for i = 1...wn then the system does not recognize Qn+1 and
(6) is undefined — zero divided by zero.

1.1 Early Training: Operation of system at beginning of
Training Sequence

In the early training of the system, we allow only one R — so there is only one
kind of problem. It is possible to do a fair amount of useful learning within this
constraint. Another simplifying constraint, is that Oj(· | ·) take on the values 0
and 1 only.

This corresponds to a kind of deterministic induction. It can be used for
training sequences in parts of mathematics in which there is only one correct
answer to a problem. Here Ai = H(Qi), but we do not know H(·). We want to
find an F j such that for all i,

Ai = F j(Qi) (7)

and aj
0, the a priori probability of F j(·), is as large as possible.

To start off, we have only one Q1, A1 pair. We will show how Lsearch can
be used to find a function F 1 such that F 1(Q1) = A1, and a1

0, the a priori
probability of F 1, is as large as possible.

Using the AZ language of Appendix A, we first add Q1 to the argument list,
so the output can be a function of Q1. Then we do an exhaustive search of all
possible codes for F 1, such that the time to generate and test F 1 is less than
a1
0 · τ , a1

0 being the apriori probability of F 1, and τ being the time needed to
execute a small number of computer operations. [The value of τ is not critical].
If no suitable F 1 is found, we double τ and repeat the search. This doubling
and testing is repeated until we find a F 1 such that F 1(Q1) = A1. If time is
available1 , we continue doubling for a while longer (oversearching) in the hope
that we will find F 1’s with larger a1

0’s. If we do, we preserve in memory all of
the F 1

j functions that work, even though most of them may have a smaller a1
0

than that of the best F 1 found. If we have only one satisfactory F 1 when Q2

arrives, our guess for A2 is F 1(Q2). If there is more than one F 1 in memory

1An upper bound on available time is given by the trainer as part of the description of the
induction problem.

9

(F 1
j : j = 1...k), then we may have several predictions: The relative probability

of the prediction F 1
j (Q2) is a1

0,j , the a priori probability of F 1
j .

When the true A2 is revealed, we don’t have to do much updating if
F 1

j (Q2) = A2 for any of j. We simply remove all F 1
j ’s that don’t work. If no F 1

j

works, then we have to do more serious updating.
To do this, we remove Q1 from the argument list and replace it with Q2. We

add to that list, the best F 1
j that we’ve found. This enables us to build upon

the functions we’ve found useful in the past. We then do an Lsearch to find a
function with A2 as output — if we do, we replace Q2 by Q1 in the argument
list and see if the output is A1. If it is, we have a successful F 2; if not, we
continue the search, with Q2 in the list rather than Q1. We continue searching
until we find a F 2 such that F 2(Q1) = A1 and F 2(Q2) = A2.

This routine continues as we update Q3, A3;Q4, A4.... Each time we find
an F that works with all of the examples up to present, we put that F in the
argument list.

In updating, we backtrack as little as possible. Suppose Fn works for Qi, Ai; i =
1...n, but Fn(Qn+1) 6= An+1. With F 1, F 2...Fn in the argument list, we do a
search for an Fn+1 that will work with Q1, A1...Qn+1, An+1. If we can’t find
one, we backtrack one level and try a search with F 1, ...Fn−1 in the argument
list instead. If unsuccessful, we backtrack two levels, remove Fn−1 from the
argument list, and try again, etc.

Keeping in memory many alternative non-optimum solutions to problems
obtained by “oversearching” has an effect similar to that of backtracking. They
both give useful alternatives when the present trials fail. Of the two techniques
backtracking, is much slower, but can be more exhaustive of possibilities.

Having many alternative non-optimum codes gives us a way to estimate the
probability of a prediction.

1.2 Updating: How system is modified after problems are
solved

The forgoing system must be augmented considerably if we have several Ri

and associated P k
i . A critical aspect of system operation is that of “updating”.

When we are given a new question, answer pair (Qn+1 , An+1), how is the
system modified? How do we update the sets of functions Ri and P k

i so that
the system will respond accurately to Qn+1, continue to respond well for Q1...Qn

and be likely to respond well to (unknown) future questions?
There are five possible kinds of response of the system to the new Qn+1,An+1.

Each has its own updating algorithm.
1. There is one and only one i such that Ri(Qn+1) = 1 and
P =

∑ki

k=1 ak
i P k

i (An+1|Qn+1)/
∑ki

k=1 ak
i is acceptably large.2 In this case

2The criterion for whether P is “large enough” will change during the course of training
of the system. At first, the “largeness thresholds” will be given by the trainer as part of

10

the response of the system is satisfactory and no updating is needed.
2. Same conditions as 1, except that P is too small. In this case there are

at least two ways to update:
2a. Modify Ri so the new R′i(Qi) = Ri(Qi) for i ≤ n, but R′i(Qn+1) = 0
Devise a new Rwn+1 such that Rwn+1(Qi) = 0 for i ≤ n but

Rwn+1(Qn+1) = 1
Find a set of P k

wn+1 functions such that
∑

k ak
wn+1P

k
wn+1(An+1|Qn+1) is as

large as possible.
2b. Keep the same Ri(·) , but modify the associated P k

i functions, so that

ki∑

k=1

ak
i

∏

l

P k
i (Al|Ql)/

ki∑

k=1

ak
i

is as large as possible. (Here l ranges over those values of l for which
Ri(Ql) = 1). This method of updating is usually better than method 2a in
terms of future system performance, but takes more time.

3. Ri(Qn+1) = 0 for i = 1...ωn.
Find a new Rwn+1 such that Rwn+1(Qn+1) = 1 but Rwn+1(Ql) = 0 for

l 6= n + 1.
Find a set of functions, P k

wn+1 such that

∑

k

ak
wn+1P

k
wn+1(An+1|Qn+1)

is as large as possible.
4. Ri(Qn+1) = 1 for more than one value of i , and at least one of the

recognizers is associated with a set of P j
i functions that give an adequate P for

An+1.
Modify the other recognizers so they no longer recognize Qn+1 but otherwise

behave the same.
5. Ri(Qn+1) = 1 for more than one value of i, but none of the associated

P j
i functions gives an adequate P for An+1.

There are two ways to update in this case:
5a. Modify the Ri’s that recognized Qn+1 so they no longer recognize Qn+1,

but otherwise behave the same. We are now in “Update situation 3” and can
proceed accordingly.

5b. If there are two or more Ri such that Ri(Qn+l) = 1, then the P j
i ’s

associated with those Rk
i ’s are likely to have important features in common.

We can take advantage of this “commoness” if we can find a single set of P i
m

functions that is able to solve all of the problems formerly requiring many P i
k

each problem definition. In later stages of training, the system itself will be able to induce
reasonable thresholds — based on its own experience and its goal of maximizing the value of
equation(4) for the entire data set.

11

sets. This would reduce the description length of Oj , and increase its a priori
probability, thereby increasing the value of expression (1).

While this method of updating is usually very time-consuming, it is a very
desirable kind of update since it “merges” P i

k functions and it also merges the
associated R functions. These operations can give a very large increase to equa-
tion (4). They can also speed up considerably both recognition and prediction.

This large increase in (4) resides mainly in the a priori probabilities of the
Oj functions. Each such function consists of wn sets of Ri and associated
P j

i functions. The description length of Oj is approximately the sum of the
description lengths of the Ri and the P j

i . By “merging” the functions, we reduce
the number of functions that need to be described — which usually increases
the a priori probability of Oj .

Discovery of new R functions corresponds to the Analysis phase of scientific
inquiry - breaking a domain into smaller parts that can be dealt with using
techniques peculiar to those parts. Merging of the R functions in update method
5b corresponds to Synthesis - the realization that several apparently disparate
domains really have much in common and can be treated in a unified manner.

The history of science can be viewed as a continuing sequence of Analysis
and Synthesis operations.

In the foregoing we have allowed R(Ql) to be 0 or 1 only, with no overlap
of the R functions. It is also possible to have a system in which R(Ql) is a real
between 0 or 1 — and overlap of R’s are acceptable. We will not discuss such
systems in this paper.

1.3 Scaling: Time needed to solve successive problems
normally increases very rapidly. How to prevent this

As we increase the number and/or variety of our problems, the search times for
the simple system just described, increase very rapidly. Suppose we have just k
functions and constants when we begin our training sequence. The probability
of each code element is k−1. If we add one F i to the list its probability becomes
(k+1)−1. If we add one function F i to the list each time we solve a new problem,
the probability of a single code element will be roughly (k +n)−1 after we solve
n problems (“roughly”, because the probabilities of various code elements will
usually change during problem solving). In Lsearch the total search time is
proportional to the time needed to generate and test an acceptable solution,
divided by the a priori probability assigned to that solution. For k = 10, n = 20
and as little as 5 symbols in the solution, we will have a search time of about
(10 + 20)5 ≈ 2.4× 107 times the processing time of the solution.

This would be the factor needed if we only needed to find 5 symbols to add
on to the common solution to the first 20 problems. If we have to backtrack, we
retain the common solution to the first 19 problems, but we will usually need
more than 5 symbols to find a solution including two new problems. — perhaps

12

10 symbols would be needed — giving a factor of about (10+19)10 ≈ 4.2×1014,
which begins to get somewhat unmanageable. With more backtracking or a
larger number of problems, it becomes very unmanageable.

In the forgoing analysis, we have used “ball park” estimates. In an empiri-
cal study of Algebraic Notation Learning, using the system described, without
backtracking, we did, indeed, find that the search time increased very rapidly
with n.

There are several devices we can introduce to deal with this problem. First,
the use of l different recognition functions, Ri, effectively reduces the value of
n (the number of problems) by a factor of about l.

Another great reduction in search time can be obtained by “context discov-
ery”. In our definition of the AZ language, the probability of a particular symbol
of any point in a function description is independent of the recent previous sym-
bols, and is independent of the kind of problem or subproblem being solved. By
introducing “context recognizers” we can take advantage of the fact that in
certain contexts, certain symbols are much more likely than others. Suitably
designed contexts can greatly increase the probabilities of certain symbols and
greatly increase the probabilities of correct problem solutions — thus decreasing
their associated search times.

How do we define contexts? The simplest kind of context is the preceding
symbol. In prediction of English text, the “space” symbol is very important
because the probability distribution of symbols following it are quite different
from the allover average probability distribution.

More generally, any subset of postfixes of a string of symbols may be regarded
as a kind of context for the following symbol. Examples of contexts of this kind:
the last symbol is “sum” ; the last two symbols are the same; the entire sequence
has an odd number of symbols; the number of symbols is a prime number, ...

It will be noted that the R (recognition) functions previously described are
one way of implementing one kind of context.

Context can be expanded beyond the immediate code string. We can in-
clude the problem being solved (Qn+1, An+1) and/or any number of previous
QA pairs. We might want to include previous solutions to problems, if this
information is not available in the earlier part of the function being coded. In
human problem solving, a more global context is quite important. We want
to know how and where the problem arose — from chemistry, physics, math...
These kinds of contexts are important in machine learning as well, and we must
find ways to give the system access to such information.

In the solving of mathematics problems by humans, a common heuristic is
to abstract the problem – to remove apparently irrelevant features and retain as
few features as are necessary to define the problem adequately.

For machines, this heuristic must be inverted. The problems given to the
machine are often already abstracted. It is necessary for the trainer to restore
any useful contextual information. This contextual information tells the ma-
chine what areas to explore to find problem solving techniques that have been

13

successful in past problems similar to the current problem.
One way to give contextual information of this sort is to give the Q’s “in-

dices”: each Q can have associated with it one or more symbols that convey
contextual information. One symbol type might tell if the problem is a math
or physics or biology problem. Another might tell if the problem involves dif-
ferential equations – and if so, what kind, etc. The system will then learn to
correlate these indices with problem solving techniques. As the machine ma-
tures, the trainer will be able to omit some of the indices – the machine will be
able to induce them from the data it received in its earlier training.

One value of the indices is in “Transfer Learning”. All of the data used in
induction problems can be regarded as one large “corpus” (body of data). At
first, it may be easier for the system to consider “sub-corpora” — data that
have the same indices on their Q’s. Each can be regarded as a separate training
sequence, and they can be solved independently. It is, however, better to regard
all of the data as part of the same large corpus, so that the system can use
common functions in the inductions on sub-corpora to reduce the total number
of bits to describe the data, thus materially increasing the value of equation 1.
This “sharing of functions”; can be used to link any data in the system. What we
have is an effective General Conditional Probability Distribution (GCPD) for all
of the inductive data in the system. In sections 2 and 3, we will discuss Inversion
problems and Optimization problems. Though they are not induction problems,
they have probability distributions that guide the searches for solutions to their
problems. These probability distributions will also be included in the GCPD.

2 Inversion Problems: Solution of P and NP
Problems

In Inversion problems, we are given a string, s, and a function G(·) from strings
to strings and we are asked to invert G with respect to s: to find an x such that
G(x) = s. We want to do this as fast as possible.

2.1 Solution by Lsearch

One way to solve such problems is to use Lsearch3. In one simple kind of Lsearch,
we look for a Problem Solving Technique (PST) in the form of a function, Fi

that maps the description of G(·), and the target string, s, into a trial string xi.

Fi(G̃, s) = xi

G̃ is a string that describes G(·). It is usually a program. We can use the
language AZ of appendix A, to obtain a probability distribution, Pi = P0(Fi) ,
on all possible Fi(·, ·).

3Appendix C discusses different kinds of Lsearch.

14

From P0(·) and G(·) and s, we can use Lsearch to obtain a solution,
xi = Fi(G̃, s), such that G(xi) = s, in the following way:
Suppose τ is the time needed for a small number of machine instruction (τ is
not a critical quantity). We try all possible Fi’s, using a maximum time of τPi

to generate Fi and xi and test xi. This takes total time
∑

τPi which is ≤ τ
since

∑
Pi ≤ 1. If we do not find a solution, we run all the trials again, using

2τ as our time limit. We keep searching with doubling and redoubling of our
time limit until we find a solution. The total time for all of the trials will be
≤ 2tl/Pl.
Pl is the probability assigned to the Fl that solved the problem.
tl is the time needed to generate and test the correct solution.

After we solve the first problem, we put the definition of Fi in the “argument
list” of the language used to generate trials.

When we have solved several problems in this way, the language will have
several useful functions in its argument list. It will usually be possible to find
common subfunctions that can be defined, to increase the probabilities of past
solutions to problems, just as was done in the solutions to the induction problems
of section 1. In general, all of the techniques for increasing the probabilities of
solutions of induction problems in section 1, can also be used for helping to
solve Inversion problems.

In section 1 we wanted solutions of maximum probability. For Inversion
problems, we also want solutions of high probability since search time is inversely
proportional to probability of solution, and high probability solutions will tend
to give us the minimal search times we are looking for.

2.2 How the system uses its optimization capabilities to
improve its update and search methods

In the method of solving problems just described, the system does not “know”
that it is supposed to try to find fast solutions. It simply tries to imitate PSTs
or subfunctions of PSTs that have been successful in the past. Though this
method works to some extent, it can be much improved.

From previous experience with various PSTs on various problems,we find Fl

to be the most promising PST for the present problem, Gn. We apply Fl to Gn

for a short time, then in view of its degree of success or lack of success,we revise
our estimate as to which is the best PST for Gn. We then apply this “revised”
PST (which may or may not be the same as the previous Fl) to Gn for a short
time. This procedure is repeated until we solve the problem or until our time
runs out.

The first question is – given a corpus of historical data on the results of
various PSTs working on various problems, how can we find the PST that is
most promising for the present problem?

Consider the set of quadruples: G̃j , sj , Fl(·, ·) , tj,l.

15

G̃j is a string that describes the jth function to be inverted.
sj is the argument for the inverse of Gj .
Fl(·, ·) is the function of G̃j and sj that solved the problem.
tj,l is the time it took for Fj l(G̃j , sj) to generate and test the correct solution

to the jth problem.
We have a quadruple like this for each problem solved.
For the new problem, (G̃n , sn), given any Fk(·, ·) we can use the technique

of the previous section on induction, to get a probability density distribution of
the time it will take for Fk to solve that problem. Here, we regard
(G̃j , sj , Fl(·, ·)) as Qj,l and tj,l as Aj,l.

Using Lsearch, we look for probability density functions Oi such that

ai
0

∏

j,l

Oi(tj,l|(G̃j , sj , Fl(·, ·))) (8)

is as large as possible.
ai
0 is the a priori probability of Oi and the j, l product is over the known

Qj,l = (G̃j , sj , Fl), Aj,l = tj.l pairs.
Note that (8) uses only information from successful attempts to work prob-

lems. This expression must be modified to include information from failures
as well. Before explaining how to do this — some simplification of notation:

Let

hi ′
j,l = Oi(tj,l|(G̃j , sj , Fl))

This is the probability density (according to Oi) that PST,Fl will solve the
problem (G̃j , sj) at time tj,l.

Let

hi
j,l(t) =

∫ t

o

hi ′
j,l(t

j,l)dtj,l

This is the probability (according to Oi) that by time t, Fl will have solved
the problem (G̃j , sj).
1−hi

m,k(t) is then the probability (according to Oi) that Fm has failed to solve
(G̃k, sk) by time t.

Consider the expression:

ai
o

∏

j,l

hi ′
j,l(t

j,l)
∏

m,k

(1− hi
m,k(tm,k)) (9)

The first product is over j, l pairs in which various Fl’s have been successful
at time tj,l, as in equation(6).

The second product is over m, k pairs in which F k has failed to solve problem
m, by time tm,k.

16

We want to find an Oi such that equation (9) is as large as possible — the
Oi that makes most likely, the observed successes and failures.

When we find a suitable Oi, then for new problem (G̃n, sn) and arbitrary
Fl(·, ·) we can obtain a probability density, hi′

n,l(t), that Fl(·, ·) will solve that
problem at time t. This Oi becomes part of the updated GCPD (General
Conditional Probability Distribution) and can be used to guide Lsearch. While
it is, indeed, possible to run an Lsearch this way, we will describe a search
technique that seems to be much faster than Lsearch.

Given a problem, (G̃n, sn) and a good Oi function, there are an infinite
number of F (·, ·) functions for which Oi obtains associated h(t) distributions.
We need a criterion for “utility” of a h(t), as well as a means for finding a h(t)
that is optimum with respect to that criterion.

Consider h(t)/t. It gives us the probability of success per unit time expended.
For each h, denote by α,the largest value of this ratio, and by tα the time at
which this occurs, so α = h(tα)/tα.

In this particular situation, the first Gambling House Theorem4 suggests
that we will minimize expected total solution time if we schedule our Fl trials
so that their associated h(t)’s are in α order: largest values first.

We say “suggests”, because the Theorem assumes that the success probabil-
ities of the trials are uncorrelated — that when one trial fails, the probabilities
of success of all other trials do not change. In the present case the probabilities
are correlated and we have modified our search procedure to take advantage of
these correlations to speed up our search.

Once we have a good Oi, obtaining a set of PSTs of high α value is a time
limited optimization problem that is solvable by the techniques of section 3.

To solve our original inversion problem, we first try the PST of largest α.
If it has not been solved by time tα, we reoptimize equation (9) using the
additional information that up to time tα the present PST has failed. If the
reoptimization tells us that continuing to work on this PST still gives the best
α, we continue using it — otherwise we switch to a more promising PST. This
alternation between our use of the best PST and revision of our choice of best
PST continues until the problem has been solved or until we have run out of
time.

4“At a certain gambling house there is a set of possible bets available — all with the same
big prize. The kth possible bet has probability pk of winning and it costs dk dollars to make
the kth bet. All probabilities are independent and one can’t make any particular bet more
than once. The pk need not be normalized.
If all the dk are one dollar, the best bet is clearly the one of maximum pk. If one doesn’t
win on that bet, try the one of next largest pk, etc. This strategy gives the least number of
expected bets before winning.
If the dk are not all the same, the best bet is that for which pk/dk is maximum. This gives
the greatest win probability per dollar.
Theorem I: If one continues to select subsequent bets on the basis of maximum pk/dk, the
expected total money spent before winning will be minimal.
In another context, if the cost of each bet is not dollars, but time, tk, then the bet ordering
criterion pk/tk gives least expected time to win”. (Sol 86 Section 3.2)

17

It will be noted that the forgoing technique is not at all, “Lsearch”. In fact,
it seems to overcome a serious deficiency of Lsearch. If there are many trials
that are identical or nearly identical, but which have different descriptions of
the same length, Lsearch, will test all of them — which is quite wasteful. The
technique just described will usually test only one of them — when a candidate
is abandoned because its α has been reduced and it is no longer maximum, then
usually candidates that are identical or very similar to it, are also abandoned
because of small α.

3 Time Limited Optimization Problems

In Time Limited Optimization, we have a function G(·), from strings to reals,
and we have time limit t. We must find an x in time ≤ t such that G(x) is as
large as possible. More generally, the string, x, can represent a number.

3.1 Solution by Lsearch

These problems can be solved using Lsearch, much like the Inversion problems
of section 2:

We have a set of PSTs, [Fi], that look at the problem (G(·), t) and after
a requested time ti present a solution candidate, xi = Fi(G̃(·), ti), which is
evaluated as G(xi).

We have, as for Inversion problems, an a priori probability distribution
P0(Fi) that initially, is the same for all Time Limited Optimization problems.
We run the generation and testing of Fi and xi for time t · P0(F̃i). Since∑

i P0(F̃i) ≤ 1 the entire process takes ≤ time t. The xi of maximum G(xi) is
then selected as output. If there is remaining time, we can rerun the tests using
times 2TP0(F̃i) — doubling and redoubling until all of the time is used up.

After we solve the first problem, we put the solution function, Fi, into the
argument list of the language AZ used to generate the trials — just as we did
with Inversion problems. All of the methods used to improve the guiding proba-
bility distribution for Inversion problems can be used with nominal modification
in the present case.

3.2 How improvement techniques for Inversion Problems
are applied to Optimization Problems

The improved methods of Section 2.2 can be applied to optimization problems
as well.

Here we want to find Ojs such that

ai
0

∏

j, l

Oi(Gj, l|(G̃j , tj , Fl)) (10)

18

is as large as possible.
(G̃j , tj) describes the jth optimization problem: to find within time tj , an x

such that Gj(x) is as large as possible.
The j, l product is over our history of Gj, l, (G̃j , tj , Fl) pairs that have oc-

curred in the past.
Let us define hi ′

j, l(G
j, l) = Oi(Gj, l|(G̃j , tj , Fl)). It is the probability density

(in view of Oi) that PST, Fl will find an x within time tj , such that Gj(x) = Gj, l

After we have found a good Oi function via equation (10), we can use it to
obtain an h′ function for an arbitrary problem and arbitrary PST.

Suppose we want to solve a new problem, Gm, tm. Then for every Fl, Oi

will give us a probability distribution h′, over Gm, l. Since we want Gm, l to be
as large as possible, we will select for our first trial the fl with a hi ′

m, l such that
its expected Gm, l value i.e.

γi
m, l =

∫ +∞

−∞
Gm, lhi ′

m, l(G
m, l)dGm, l (11)

is as large as possible.5

We apply this most promising Fl to the mth problem for time tm/10 (the
factor 10 is not critical). At the end of that time, we reevaluate equation (10)
to see if Fl is still the most promising PST. If it is, we continue applying it
to the mth problem for additional time, tm/10. If it is not, we apply a more
promising PST to the problem. We continue this alternation of applying PSTs
and reevaluating them, until all of our time, tm has been used up.

We are proposing a technique for optimization that requires at least two new
optimizations! Is anything being gained?

The first new optimization is equation (10). Obtaining a good Oi is useful
for not only the present problem, but for all future problems — so it is a burden
that is, to some extent, shared by all problems.

The second optimization involves finding the Fl with as large γi
m, l as possi-

ble.
Since this is a common problem that is solved many times, we will try to

find a way to solve it that is fast and effective. In optimizing equation (10) and
again in optimizing the γi

m, l of equation (11), we will usually be making small

5The sophisticated statistician will note that while the solution to any optimization prob-
lem is invariant if the utility function G is modified by a monotonic, possibly non-linear,
transformation, the value of γ in equation (11) will not always be invariant under such a
transformation.

Equation (11) is correct only if the utility function G is “linear”, i.e. the utility of “G(X)
with probability one” is the same as the utility of “G(X)/p with probability p” for all
0 < p ≤ 1.

If G is not linear and no information is available that can give us an equivalent linear
utility, then while the solution to the optimization problem is “well-defined”, the solution to
the “strategy optimization problem” is not “well defined”.

Fortunately, several important utility functions, such as time and money are linear or
linearizable.

19

corrections to a previous optimization — so the process need not take much
time.

The techniques of the present section and of Section 2.2 are meant to follow
what seem to be common human methods for solving problems of these kinds.

Since the induction problems of section 1 are all Time Limited Optimization
problems, we can apply the techniques of the present section to improve their
solutions. These improved probabilities give us better h() distributions, which
enable us to recursively improve the h() distributions and so on. This can even-
tually result in extremely good h() distributions and extremely good solutions
to both optimization and inversion problems.

4 Universal Distribution on Probability Distri-
butions: Realization techniques

In the QA induction of Section 1, we look for probability distributions, Oi(A|Q)
such that equation 2.2 is maximized.

If the induction problem is deterministic (only one possible A for each Q),
then we need a probability distribution on deterministic functions, Oi(Q) = A.
The language AZ (Appendix A) describes a universal distribution of this sort,
as does the FORTH-like language used by OOPS6.

It is often possible to use languages of this kind for probabilistic induction as
well. In Sections 2.2 and 3.2 we use the probability distributions h′(t) and h′(G)
for updating Inversion and Optimization problems. In both kinds of problems
it is often reasonable to assume that h′() is a monomodal distribution.

For Inversion problems, 0 ≤ t ≤ ∞, so the Gamma distribution,
h′(t) = axrε−bt is a reasonable approximation.

For Optimization problems, −∞ ≤ G ≤ ∞, so the Gaussian distribution,

h′(G) = ae−
(G−µ)2

2σ2 is reasonable.
In equation 10 we may set

Oi(Gj,l) = aε−
(Gj,l−µ)2

σ2

in which a, µ and σ are all functions of G̃j tj and Fl.
The universal distributions of AZ or of OOPS would be adequate for finding

suitable forms for these functions.
For more general induction problems, we need a universal distribution on

probability distributions. One way to obtain such a distribution uses a three
input universal machine. All three inputs are prefix sets.

The first input is a finite string S, that describes the function.
The second is the finite string, Q, the “question”.

6OOPS (Sch 02) is a general problem solver that uses Lsearch. See section 7.2 for further
discussion.

20

The third input is a random binary sequence.
For fixed S and Q, we have a machine with random input — inducing a

probability distribution on the output, A, just as in the universal probability
distribution. In the present case however, the S and Q inputs need not define
a universal distribution on the output.

The forgoing formalism describes a universal distribution over all possible
probabilistic relations between Q and A. For every describable probability dis-
tribution between Q and A, there exists at least one value of S that implements
that distribution.

Though it is possible to realize a three input device of this sort using the
AZ language, it is easier to implement using FORTH-like languages such as the
one used in OOPS.

5 Training Sequences: How to design a sequence
of problems to train the system

In an earlier paper (Sol 89) we discussed the design of Training Sequences at
some length. The goal was to find a function that would solve a particular
problem. In the early training of the system, the trainer would know a solution
function for each of the problems presented. This function would be expressible
as compositions of subfunctions. The subfunctions were composed of subsub-
functions etc, until we got to the primitive functions of the system. The Training
Sequence would first give problems that were solvable by simple combinations of
the primitives. These solutions were then usable for the next round of problems
that had solutions moving toward the final goal problem. This succession of
problem sequences continued until the final function was attained.

An important part of training sequence design involves “factoring” of prob-
lems into parts that are useful in themselves. These parts must be further
“factored” and so on. This “factoring” may be understood as a kind of inverse
of “chunking”. We follow the “reusable parts” orientation of Object Oriented
programming.

While Training Sequences of this sort can solve problems, they can’t solve
problems of much complexity in any reasonable time, for reasons discussed in
section 1.3 on “scaling”. Learning subfunctions that build up to the final solu-
tion to a problem is an essential part of a Training Sequence, but it is not in
itself adequate - we must also deal with the scaling problem. The discovery of
relevant contexts is a strong step in this direction.

In section 1, we mentioned use of “context” to speed up problem solving.
These contexts must be learned and we must design Training Sequences to teach
them. “Context” may be regarded as a kind of “catalyst” that makes certain
combinations of functions more likely. There are probably many other kinds of
“catalysts” used in human learning. We must find them and find ways to teach

21

them to our system.
Finding “catalysts” is closely related to heuristic programming. We have to

find observations (“contexts”) that make it more likely that we will choose the
desired components of a function that solves the problem.

There is a somewhat different direction that training can take. In section
2 on Inversion problems, the system had a number of PSTs that had been
successful in past problems and it had to decide what probabilities to assign to
them in working on a new problem.

The trainer can greatly augment this set of PSTs by including techniques
that the trainer has found useful. The system would then learn what kinds of
problems to which those new PSTs could be applied. It would correspond to
having a student memorize a set of PSTs and learn how to use them.

We would like the student to understand the PSTs — how they were con-
structed and why they work, so the student could invent new PSTs that were
more appropriate to new problems.

One way to do this would be to ask the system to regard the set of PSTs
as the “acceptable sentences” of a language for which it must find a stochastic
grammar — which it could use to extrapolate the set of PSTs. This process
would be much facilitated if the trainer first “factored” the PSTs into common
useful subfunctions. A very mature system might be able to do this factoring
without external help, but in the early development of the system, external aid
of this sort would be needed.

6 Efficiency of the System

6.1 Updating: How much time to spend on updating

After the system solves a problem, taking time t, It must update the associ-
ated probability distribution. This involves looking for repeated functions or
subfunctions in the solution and/or evaluating equations 9 and 10.

Both of these tasks are open–ended in the sense one can spend an arbitrary
amount of time on them. How much time should be spent on updating the
guiding probability distribution, relative to the time spent using the distribution
for Lsearch to solve problems?

A good approximate solution is to spend as much time on updating as one
spends on searching. This is within “a factor of two of optimum” in the following
sense: Suppose that we have a system that uses a different ratio of update to
problem solving time and is better than our system. Then if our system has a
clock that is twice as fast as that system and uses equal time for problems and
update, it will have results that are at least as good as the other system, since
at any time, it will have spent at least as many machine cycles as the other
system, for both problem solving and for update.

22

6.2 Ultimate Limits of System: An argument that there
may be no upper limit on performance of system

Normally, in the course of its operation, the system looks for better PSTs. Since
it uses a universal language to describe candidate PSTs, there is really no limit
on what PST it might consider. It might find a PST that is much better than
Lsearch — in which case, it would nominally use Lsearch, but give that PST
weight close to one, so that almost all of its time would be spent applying this
new PST to problems. It will have effectively replaced Lsearch by the new PST.

7 Related Work

7.1 Lenat’s CYC

In its goals, this work is similar to that of Lenat’s CYC (Len 95). The main dif-
ference is in what we consider to be minimal “common sense” knowledge. Lenat
is not sure just what knowledge a newborn child has, so he puts in whatever
he thinks might be useful. When it reaches “critical mass”, he feels the system
will be able to acquire information with little guidance, by reading books and
surfing the net.

“How to do induction” is just another set of facts that he inserts into the
machine - like “How to do simple logic”, and the “meanings” of various words.

We, too, want to make a minimal system that will be able to acquire knowl-
edge without supervision. We feel, however, that “How to do induction” is
the main thing that has to be given to the system to start - that the rest can
be inserted with less care - we can make mistakes in teaching it, but the sys-
tem doesn’t expect perfect information - it’s models of the world are always
probabilistic.

When the system acquires new information, it always stores it probabilisti-
cally using its own internal language, in the best ways that it can at that time.
This “internal language” changes as the system matures. This differs markedly
from the way CYC stores information.

A good fraction of the human brain is devoted to processing visual and
acoustic signals. Another very large part (the cerebellum) is devoted to physical
equilibrium, thermal control, etc. We avoid the need for this kind of “common
sense” by initially teaching abstract mathematics - giving the system problems
that it must learn to solve. After it has leaned enough algebra to have a fair sized
internal vocabulary of algebraic concepts, we begin to teach it to understand
English statements and questions about Algebra. Next we teach it to understand
English statements about topics slightly different from algebra, beginning a slow
journey into a universe that is progressively different from algebra – eventually
culminating in stories about events in the real world.

23

7.2 Schmidhuber’s OOPS

A program for machine learning that is perhaps closest to the present system is
Schmidhuber’s OOPS (Sch 02).

For purposes of comparison we will call the present system “Alpha” and
consider two phases of its behavior:

Phase 1 is the Q,A induction system of Section 1 using the AZ language of
Appendix A. It can be considered as a “stand alone system” to do induction
without the ability to work the Inversion or general Optimization problems
described in Sections 2 and 3.

Alpha enters “Phase 2” when it has acquired enough skill in induction to
implement the improved updating technique of Section 2.2.

The behavior of Alpha is analogous to the operation of a ramjet engine:
A slower, less efficient propulsion system is used to get to critical velocity —
at which point the ramjet begins to operate and the initial propulsion system
becomes unnecessary. Phase 1 is needed only to get to Phase 2 — at which
point the updating techniques of Phase 1 are used less and less.

A variety of induction systems would be adequate for Phase 1. Genetic
Algorithms, certain types of Neural Nets, SVM’s, and a modified form of OOPS
are some possibilities.

OOPS and Phase 1 of Alpha are very similar. They both use universal
distributions to solve problems using Lsearch 7

The language used by OOPS is a kind of stack language – related to FORTH.
The language used by Alpha is AZ, similar to LISP. Both of these languages can
use definitions to compress code — an essential feature in incremental learning.
AZ is a functional language: functions are represented by trees, and all subtrees
are legal functions. In AZ, finding common subtrees in a large function enables
compression. In the language used by OOPS we guess that it is less likely that
an analog of this technique would often be useful.

Both systems use incremental learning to update the probability distribution
that guides Lsearch. While the update systems are similar, Alpha uses contexts
of various kinds to deal with scaling effects.

We are uncertain as to how OOPS approaches scaling — though apparently,
it is a serious problem. OOPS was able to solve the general “Towers of Hanoi”
problem about 1,000 times faster, by using a search pattern (a kind of proba-
bility distribution over problem trials) from the solution to an earlier problem.
Since there weren’t many “earlier problems”, it was relatively easy to find the
appropriate pattern. If the system had solved 1,000 problems before the “Tow-
ers of Hanoi”, finding the correct pattern may have taken 1,000 times as long

7Schmidhuber’s terminology is incorrect: what he terms “Osearch” is really Lsearch; what
he terms “Lsearch” is really “SIMPLE”, a minimally complex program devised by Li and
Vitányi to illustrate an important characteristic of Lsearch — i.e. its ability to solve all
solvable inversion problems within a constant factor of the speed of an optimum solution.
The “constant factor” for SIMPLE is however, much larger than that for Lsearch.

24

— thus cancelling out the gain in search time.
Another difference is that Alpha is largely a theoretical system. The behavior

of a variant of Phase 1, using a stack–based language (much like OOPS) has been
analyzed for the learning of evaluation of algebraic expressions (Pau 94). Scaling
effects were observed when we computed the CJS’s of problems of increasing
difficulty. While some analysis was made of more difficult problems, no CJS
values were computed.

OOPS, on the other hand, has been realized as a computer program —
demonstrating the importance of early learning in facilitating solutions of diffi-
cult problems.

A critical aspect of OOPS is its ability to “edit” old programs — break them
up and reassemble the parts to make new promising trials. In the present system
there are only a few such “editing” instructions, and only one, boostq, has been
shown to be useful. Certainly more editing instructions will have to be added
and the system will have to learn to use them. While OOPS does have facilities
for “noticing” that certain instructions have been more useful than others, as
well as facilities for defining macros, it is not yet clear as to how the system
would be able to use those facilities to learn to do useful editing.

The most serious difference between OOPS and Alpha is in OOPS not having
any concept of “optimization”. In its present state of development it has nothing
corresponding to Phase 2 of Alpha. Phase 2 has many useful features. Perhaps
the most important are:

• It is able to use its improved updating scheme to improve its induction,
which further improves the updating scheme, etc.

• It is able to use information about failed trials, as well as information
about success.

• It is able to “invent” new PSTs as well as assign probabilities to them.

• It really tries to find the optimum solution to a problem, rather than an
improvement over the best previous trial.

7.3 Genetic Programming

In section 1, on Inductive Inference, we mentioned the possible use of Genetic
Programming (GP) for updating. It is a particularly good kind of problem for
GP (Cra 85, Ban 98), since we are always working on roughly the same update
problem. We can use the same population of PSTs but each new problem given
to the system changes its “fitness function” to a small extent.

Current GP systems are much improved when the mutation and crossover
algorithms are allowed to adapt to the problem being solved and to the nature
of the extant population. The techniques of section 1 can be used to implement
this adaptation.

25

In GP, new populations are obtained from old by mutation and/or crossover
— which were originally attempts to simulate organic evolution. These opera-
tions can be usefully generalized. Mutation can be considered to be “induction
from a sample of one”, and crossover, “induction from a sample of two”. Classi-
cal statistics works poorly if at all, with small sample sizes. Bayesian statistics
can deal with small samples, but the prediction depends much on the a priori
distribution. Appendix A tells us how to obtain a reasonable a priori distribu-
tion; sections 1 and 2 tell how to update it.

It is clear that we don’t have to use samples of one or two — any sample
size up to the size of the current population can be used.

The induction methods of sections 1 and 2 can be regarded as a kind of GA
using the entire population of PSTs to create new PSTs.

8 State of Research: What has been done, what
needs to be done

This report outlines the workings of the Alpha system and gives some math-
ematical details of its operation. At present, it appears that the theoretical
foundation of Alpha is sound. The main immediate problem is the design of a
suitable Training Sequence for it.

OOPS (Sch 02) is a program that has solved a set of problems using Lsearch.
Could we not use these problems as the first steps of a Training Sequence?

The main values of OOPS has been in showing how Lsearch could be used to
solve difficult problems, and that it could use information from earlier problems
to significantly improve solutions of later problems.

It is not clear how the two sets of problems solved by OOPS could be con-
tinued to solve problems of increasing difficulty. Writing very short Training
Sequences is relatively easy. Writing long Training Sequences that give the
system great capabilities in many domains is more difficult.

We expect to start our Training Sequence with very easy problems: the
number of trials need not exceed 106 — much smaller than the 1010 needed for
OOPS to solve the Tower of Hanoi.

Not dealt with in OOPS is the problem of “scaling”(section 1.3), in which the
time needed to solve a problem is significantly increased for each new problem.
We expect that this difficulty can be dealt with by discovery of “contexts”
(Section 1.3). Context discovery must be integrated with Training Sequence
design.

26

Appendix A: The AZ System for apriori proba-
bility assignment

Though AZ is similar to LISP, modified versions of the system can be made
using other languages such as Forth, APL, assembler language, etc.

We will first describe the language AZ, show how it generates functions such
as Oj of section 1, and how we assign a probability P (Oj), to its description.

We will show how On is used to evaluate Oj(Ai|Qi) in equation 1 of section
1.

The language AZ begins with a set of primitive unary, binary and possibly
tertiary functions. Functions are defined sequentially as compositions of prim-
itives and previously defined functions. An economical way to describe a large
complex function is to first describe various simpler functions, that are impor-
tant components in the description of the final function. In general, it is not
economic to define a sub–function unless it is used at least twice.

By economic we mean description shortening. It involves finding regularities
in strings and enables us to increase our estimates of the apriori probabilities of
those strings.

An apriori probability is assigned to functions such as Oj , in the following
manner:

We start with an “argument list” of primitive functions and primitive con-
stants that are usable in the function definition. In the course of our calculations,
we will occasionally add to and delete items from this argument list. Some ex-
amples of “Primitive functions” could be x, sum, minus, mul, div, sin, sin−1,
... “Primitive constants” could be 0, 1, π, e, ...

We will use Polish, parenthesis-free notation to define functions, so 3×(1+7)
is written: mul 3 sum 1 7.

To define a simple function, we will write an argument list of the primi-
tive functions and constants it might use, followed by the function name and
definition in terms of those primitives.

x sum mul 0 1 F1 sum mul x1 x1 mul x2 x2 ∆ defines the function

F1(x1, x2) = x1
2 + x2

2

The “∆” symbol indicates that the definition sequence is completed.
To define more complex functions compactly, we will define a sequence of

functions and constants culminating in the complex function we want to define.
For example, to define F2(x1, x2, x3) = x1F1(x2, x3) we write the definition

F1 followed by the definition of F2 in terms of F1:

x sum mul 0 1 F1 sum mul x1 x1 mul x2 x2 F2 mul x1 F1 x2 x3 ∆ (12)

The definition of each function or constant in a complex definition can only
refer to symbols that have occurred earlier in the definition sequence.

27

At each point in a definition string, only certain symbols are legal. Using
illegal symbols results in a meaningless (uninterpretable) string.

Except for special cases which we will discuss in the next paragraphs, the
probability of some symbol, α, occurring at a particular point in the definition
string is n/m. Here n is the number of times that α has occurred previously in
the definition string. m is the total number of times that all symbol types that
are legal at this point, have occurred previously in the definition string. This
probability assignment corresponds to “Laplace’s Rule”.

There are three kinds of symbols whose probabilities are assigned in different
ways: x, ∆, and Fi.

Whenever the symbol x occurs in a function definition, it will be followed by
a subscript that is a positive integer. The first time an x occurs this subscript
must be 1. Henceforth, the subscript of an x in the same function definition
can be any integer from 1 to n + 1; where n is the largest x subscript that
has occurred thus far in that function definition. Each of these integers has
probability (1 + n)−1.

The first time the function name F1 occurs, it is the only possible symbol at
that point. It is given probability 1. If i > 1, the first time the function name Fi

occurs, its probability is (i− 1)/i. The only other legal symbol at these points
is the stop symbol, ∆, which has probability 1/i. The stop symbol indicates
that the sequence of definitions is completed. It always occurs at the end of the
sequence of definitions.

x and the constants are considered to be illegal if they immediately follow the
first occurrence of Fi. This is because the function defined would be redundant,
e.g. Fi followed by 1 simply defines Fi to be the constant 1.

The symbols in (8), which defines F2, are assigned probabilities as follows:
F1 is given probability 1, since it is the only possible symbol at that point.
sum is given probability 1/(1 + 1), since nsum = 1 and nmul = 1.
mul is given probability 1/(1+1+2+1+1) since nmul = 1, the legal symbols

x, sum, 0, 1 have all occurred once before that point, and mul has occurred
once.

x is given probability 1/(1 + 2 + 2 + 1 + 1)
The subscript 1 is mandatory, so it has probability 1
x has probability 1/(2 + 2 + 2 + 1 + 1)
The subscript 1 has probability (2− 1)/2
mul has probability 2/(3 + 2 + 2 + 1 + 1) ...
∆ has probability 1/3 since F3 would be also legal at that point.
Table 1 summarizes the probabilities of symbols defining F2. The product of

these probabilities gives a first estimate of the apriori probability of F2. Because
F2 can be described in many other equivalent ways, this first estimate has to be
multiplied by a sizable factor to get closer to apriori probability.

The forgoing rules can only define functions that are compositions of other
defined functions. To define recursive functions we must modify the rules that
determine which symbols are legal at each point

28

The factorial function is recursively defined by the expression:

F (x) = xF (x− 1); F (0) = 1

It is a member of a class of functions defined by

F (x) = h(x, F (g(x))); F (a) = b

A function of this sort can be defined by the list:

h(·, ·), g(·), a, b

Formalisms of this kind can be devised to define more general recursive
functions.

TABLE 1

Symbol Legal possible symbols Probabilities
at that point

x x 1
sum sum 1
mul mul 1
0 0 1
1 1 1
F1 F1 1

sum sum,mul 1/(1 + 1)
mul x, sum, mul, 0, 1 1/(1 + 2 + 1 + 1 + 1)
x x, sum, mul, 0, 1 1/(1 + 2 + 2 + 1 + 1)

subscript1 1 1
x x, sum, mul, 0, 1 2/(2 + 2 + 2 + 1 + 1)

subscript1 1, 2 1/2
mul x, sum, mul, 0, 1 2/(3 + 2 + 2 + 1 + 1)
x x, sum, mul, 0, 1 3/(3 + 2 + 3 + 1 + 1)

subscript2 1, 2 1/2
x x, sum, mul, 0, 1 4/(4 + 2 + 3 + 1 + 1)

subscript2 1, 2, 3 1/3
F2 F2, ∆ (2− 1)/2

mul sum,mul, F1 3/(2 + 3 + 1)
x x, sum, mul, 0, 1, F1 5/(5 + 2 + 4 + 1 + 1 + 1)

subscript1 1 1
F1 x, sum, mul, 0, 1, F1 1/(6 + 2 + 4 + 1 + 1 + 1)
x x, sum, mul, 0, 1, F1 6/6 + 2 + 4 + 1 + 1 + 2)

subscript2 1, 2 1/2
x x, sum, mul, 0, 1, F1 7/(7 + 2 + 4 + 1 + 1 + 2)

subscript3 1, 2, 3 1/3
∆ F3, ∆ 1/2

29

Appendix B: A Convergence Theorem for Q,A

Induction

We will show that for an adequate sequence of (Qi, Ai) pairs, the predictions
obtained by the probability distribution of equation 1 can be expected to be
extremely good.

To do this, we hypothesize that the sequence of Ai answers that have been
observed, were created by a probabilistic algorithm, µ(Ai|Qi) and that µ can be
described with k bits, using the reference machine of Appendix A that assigns
a priori probabilities to all partial recursive functions.

Any probability distribution that assigns probabilities to every possible Ai,
must also assign probabilities to each bit of Ai. Suppose that ar is a string of
the first r bits of Ai. Then the probability given by µ that the (r + 1)th bit of
Ai is 0 is

∑

j

µ(ar0xj |Qi)
/∑

j

µ(arx
j |Qi)

xj ranges over all finite strings.
Similarly, the algorithm of equation 1, which we will call P , can be used to

assign a probability to every bit of every Ai. We will represent the sequence
of Ai’s by a string, Z, of these Ai’s separated by the symbols, s — denoting
“space”. Z, then, is a sequence of symbols from the ternary alphabet 0, 1, s.
Using an argument similar to the foregoing, it is clear that both µ and P are
able to assign probabilities to the space symbol, s as well as to 0, and 1.

We have, then, two probability distributions on the ternary strings, Z. The
first distribution, µ is the creator of the observed sequence, and the second
distribution, P , represents equation1, and tries to predict the symbols of Z.

For two such probability distributions on binary strings, the corollary of
theorem 3 of [Sol 78] applies: The expected value, with respect to µ (the “gen-
erator”), of the sum of the squares of the differences in probabilities assigned by
µ and P to the bits of the string are less than ln c, c being the largest positive
number such that P > cµ for all arguments.

Hutter [Hut 01] has generalized this corollary so it applies to systems with
any finite alphabet. We are here concerned only with a ternary alphabets, but
it implies a corresponding theorem if the symbols of the Ai are from any finite
alphabet.

The result is

∑

l

µ(Zl)
n∑

i=1

hl
i+1∑

j=0

∑
t=0,1,s

(P l
i,j(t)− µl

i,j(t))
2 < k ln 2 (13)

l sums over all strings Zl that consist of n finite binary strings separated by
s symbols (spaces).

30

Al
i is the ith A of Zl

P l
i,j(t) is the probability as given by P that the jth symbol of Al

i will be t,
conditional on previous symbols of Al

i’s in the sequence, Zl and the correspond-
ing Q’s.

t takes the values 0,1 and s.
µl

i,j(t) is defined similarly to P l
i,j(t), but it is independent of previous Al

i’s
in the sequence.

hl
i is the number of bits in Al

i. The (hl
i + 1)th symbol of Al

i is always s.
The total number of symbols in Zl is

∑n
r=1(h

l
i + 1).

µ(Zl) is the probability that µ assigns to Zl in view of the sequence of Q’s.
k is the length of the shortest description of µ.
This implies that the expected value with respect to µ of the squared “error”

between P and µ, summed over the individual symbols of all of the Ai, will be
less than k ln 2

Since the total number of symbols in all of the answers can be very large for
even a small number of questions, it is clear that the error per symbol decreases
rapidly as n, the number of Q,A pairs increases.

Equation (9) gives a very simple measure of the accuracy of equation (1).
There are no “order of one” constant factors or additive terms. A necessary
uncertainty is in the value of k. We cannot ever be certain that we know its
value. If the generator of the data has a long and complex description, we are
not surprised that we should need more data to make good predictions — which
is just what equation 9 specifies.

The value of the constant, k, depends critically on just what universal ref-
erence machine is being used to assign a priori probability to the Oj and to
µ. Any a priori information that a researcher may have can be expressed as
a modification of the reference machine — by inserting low cost definitions of
concepts that are believed to be useful in the needed induction — resulting in
a shorter code for µ, (a smaller k), and less error.

We believe that if all of the needed a priori information is put into the
reference machine, then equation 1 is likely to be the best probability estimate
possible.

At first glance, this result may seem unreasonable: Suppose we ask the
system many questions about Algebra, until it’s mean errors are quite small
— then we suddenly begin asking questions about Linguistics — certainly we
would not expect the small errors to continue! However, what happens when
we switch domains suddenly, is that k suddenly increases. A µ that can answer
questions on both Algebra and Linguistics has a much longer description than
one familiar with Algebra only. This sudden increase in k accommodates large
expected errors in a new domain in which only a few questions have been asked.

31

Appendix C: Levin’s Universal Search
Algorithm (Lsearch)

Levin’s original paper (Lev 73) gave some properties of Lsearch, but didn’t
tell how to do it. The Li, Vitányi book(s) (LiV 93, LiV 97) give more details
— including some ways to implement it. We will discuss three methods of
implementation: limit doubling, parallel search and random search.

Limit Doubling Lsearch

Section 1 on Inductive Inference described the application of the limit doubling
method to Inductive Inference problems.
Section 2 on Inversion problems described its application to Inversion problems.
Section 3 described its application to Time Limited Optimization.

Parallel Search

For Inversion problems: we work on all PST trials in parallel, time sharing our
CPU cycles. The fraction of time share spent on the generation of Fi, generation
of xi and testing xi, is Pi, the a priori probability assigned to Fi.

This method is at least twice as fast as the limit doubling method. However,
it requires much more memory and/or a clever disc swapping scheme.

For Time Limited Optimization, as with Inversion problems, we work on all
PST trials in parallel, using a time share fraction of Pi, for PST, Fi. We quit
when time has run out, and pick the xi from the PST that had gotten best
output at quitting time.

Random Search

Random Lsearch is a variety of parallel search. With probability Pi we randomly
choose the PST, Fi, and we work on it for a fixed time τ . We then repeatedly
randomly chose a PST and work on it for time τ . If a PST is ever again chosen,
we continue where we left off, spending another τ on it. τ should be small, but
“large” with respect to time needed to switch from one PST to another.

The properties of random Lsearch are about the same as those of parallel
Lsearch. It is particularly useful when the value of Pi is available in Monte Carlo
form — e.g. Fi can be generated by a Monte Carlo procedure, by randomly
selecting operators or op codes with probabilities that correspond to their
a priori probabilities.

Acknowledgement

I would like to thank IDSIA for the very productive month at their facility
— particularly Marcus Hutter and Juergen Schmidhuber whose comments and

32

discussion inspired this report.

References

[1] (Ban 98) Banzhaf, Nordin, Keller, Francone, Genetic Programming, an
Introduction, Morgan Kaufmann, 1998.

[2] (Cra 85) Cramer, N.L., “A Representation for the Adaptive Generation
of Simple Sequential Programs.” In Proceedings of an International Con-
ference on Genetic Algorithms and Their Applications, Carnegie-Mellon
University, July 24–26, 1985, J.J. Grefenstette, ed., Lawrence Erlbaum As-
sociates, Hillsdale, N.J., 1985, pp. 183-187.
http://www.sover.net/˜nichael/nlc-publications/icga85/index.html

[3] (Hut 02) Hutter, M.,“Optimality of Universal Bayesian Sequence
Prediction for General Loss and Alphabet,”
http://www.idsia.ch/˜marcus/ai/

[4] (Len 95) Lenat, D., “Cyc: A Large Scale Investment in Knowledge Infras-
tructure,” Communications of the ACM, 38, no. 11, 1995.
http://cyc.com/

[5] (Lev 73) Levin, L.A., “Universal Search Problems,” Problemy Peredaci
Informacii 9, pp. 115–116, 1973. Translated in Problems of Information
Transmission 9, 265–266.

[6] (LiV 93) Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity
and Its Applications, Springer-Verlag, N.Y., 1993, pp. 410–413.

[7] (LiV 97) Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity
and Its Applications, Springer-Verlag, N.Y., 1997, pp. 502–505.

[8] (Pau 94) Paul, W. and Solomonoff, R., “Autonomous Theory Building
Systems,”Annals of Operations Research, 1994.

[9] (Sch 02) Schmidhuber, J., “Optimal Ordered Problem Solver,” TR IDSIA-
12-02, 31 July 2002. http://www.idsia.ch/˜juergen/oops.html

[10] (Sol 78) Solomonoff, R.J., “Complexity–Based Induction Systems:
Comparisons and Convergence Theorems,” IEEE Trans. on In-
formation Theory, Vol IT–24, No. 4, pp. 422–432, July 1978.
http://world.std.com/˜rjs/pubs.html

[11] (Sol 86) Solomonoff, R.J. “The Application of Algorithmic Probability to
Problems in Artificial Intelligence,” in Uncertainty in Artificial Intelligence,
Kanal, L.N. and Lemmer, J.F. (Eds), Elsevier Science Publishers B.V.,
1986, pp. 473–491. http://world.std.com/˜rjs/pubs.html

33

[12] (Sol 89) Solomonoff, R.J. “A System for Incremental Learning Based on Al-
gorithmic Probability,” Proceedings of the Sixth Israeli Conference on Ar-
tificial Intelligence, Computer Vision and Pattern Recognition, Dec. 1989,
pp. 515–527. http://world.std.com/˜rjs/pubs.html

34

