OPTIMUM SEQUENTIAL SEARCH

R.J. Solomonoff
Oxbridge Research, Box 559
Cambridge, Mass. 02238

RE V., 1985

There are two theorems in Levin’s "Universal Sequential Search
Problems" (1973). The first states the now well-known principle of
NP completeness and is followed by an outline of a proof.

The second gives a solution to a very broad class of
mathematical problems, but, partly because no proof was suggested in
the paper, its great importance Is not widely appreciated. It is
our purpose to give an outline of Levin’s proof and a simple
extension of the theorem to another broad class of problems.

This will be followed by a discussion of the significance of
these problem solving methods and a technique by which they may be
used to obtain practical solutions to nroblems.

The second theorem gives a method for inverting functions
defined by computing machines or any other well defined algorithm.
Suppose we are given M, a machine that maps finite strings into
finite strings. Given the finite string x, how can we find in
minimal time, a string p such that M(p) = x ?

Finding solutions of equations, symboliq integration, and
proving mathematical theorems are but three types of problems in

this broad class.

Appendix I proves this second theorem, i.e.3 Suppose that A
i1s an algorithm that can examine M and x and within time T produce
a program, p, such that M(p) = x , then, not knowing A, we have an
algorithm that can do the same thing that A does, but in time

<12 %@,

Here, R(a) is the length of B, , the description of algorithm A,
using a suitable reference machine. C, 1s a measure of how much
slower our reference machine is than the machine that implements A
directly. Both g,and CA are independent of M and X.

Another very important kind of problem that can be solved with
Levin’s search method is a common type of optimization problem.

Here we are given a machine M that operates on finite strings, p and
yields a number, G, for its output. The problem is to find within a
l1imited search time,7 , an input that yields the highest possible
value of G.

Making predictions from numerical and/or non-numerical data is
a problem of this type, as is the problem of finding a good theory
to fit empirical data. Many problems in engineering are also of
this type.

Again, as in the previous proof, suppose there exists an
algorithm A that is able to look at machine M and the time limit, -
7, and produce the input p = A(M,7) in time 7, yielding
G value, M(p).

The theorem states that there exists a universal search
procedure that will eventually find the same p and G as the
algorithm A , and it will take less than PRALCUS c, times

as long.

Appendix Il gives the search procedure and outlines the proof,
which is very similar to that of Appendix I.

The significance of these two search methods:

A very large fraction of the problems in mathematics and in
engineering can be expressed as machine inversion problems, oOr
optimization problems of the kinds treated here - or they can be
adequately approximated by these formalisms. .

If these methods can be practically implemented, they would
be able to work an extremly large class of very difficult problems
normally solvable by only highly intelligent humans.

The practicality of these searches hinges on the sizes of two
constants: Cp , which measures the inefficiency of_the KUSP machine
in simulating A ¢ and ZQI@M) , which measures the unlikeliness orF
the machine A, and hence the difficulty of our finding it. Large
E(@n) means that A has a long (and unlikely) description via the
KUSP machine being uscd.

These two factors can be reduced to computationally
acceptabls levels through the use of training sequences of
problems of progressively increasing difficulty.

One way to do this is to introduce an additional argument "D"
(data) into the KUSP machine, MK‘(ogD,M,x) . D consists of the
previous experience cf the machine. Among the things included are
all of the problems and their solutions that it has found thus far,
along with the methods .that it has used to find these solutions.
For a particular problem M,,X, having solution p, that was found
using ACM, 4%,) = M5 (ogyD, M, +X,) = p, o+ Dy (the new value of
D) would contain at least ¥, , x, s» P, » D, and =¢0Or information

t
from which they can be easily obtained.

Using the argument D, it is possible for the o= of a new
problem to refer to solutions or parts of solutions to previously
solved problems. This materially reduces the amount of information
in = and can often reduce Zﬁqu to a manageable magnitude.

It corresponds to the human problem solving technique of making

solution trials for new problems that are combinations of concepts
successfully used for the solutions of previous problems.

Another trick can be borrowed from human problem solving:

After a problem has been solved, the data, D, can be rewritten in
more compact form, so that concepts that have often been used in
successful problem solving are given short codes. Thea problem of
making D "more compact" by finding regularities in it is a standard
form of optimization problem and is directly solvable by Levin’s
search algorithm.

D can also be modified so that the hardware inefficiency
factor, Ca » i3 minimized.

Using these and other devices to trim up the system, we obtain
a problem solver that operates much as humans seem to.

We can bulld up a problem solving system of this sort by
starting with no D at all and having the system work some problems
with solutions that are simple combinations of the primitive
instructions of the reference machine, MX . The solutions to these
problems become the initial D. The form of D is then improved by
noting regularities in the problem solutions and expressing D more
compactly in terms of these regularitiesj'

Tnis compact coding of D uses short sequences of bits to define
various useful concepts. The entire code for D consists of these

definitions followed by the description of D in terms of the

definitions.
When D has been compressed in this way, the system is able to

work more difficult problems with solutions that are simple
combinations of the concepts used to solve the earlier problems.
Using a training sequence of problems of increasing difficuly,

the system discovers more and more concepts of greater complexity

that are needed to solve these problems.

tOne of the fundamental ideas of algorithmic information theory is
that any regularity in a body of data can be used to compress that

data.

References

1. Levin, L.A. "Universal search problems." Problemy Persdaci
Informacii 9 (1973), 116-116. Translated in Problems of Information
Transmission 9, 265-266.

2. Kolmogorov, A.N. and Uspenski, V.A. "On the definition of an
algorithm." ‘'Uspehi Mat. Nauk. 13 (1958), 3-283 AMS Transl. 2nd ser.
29 (1963), 217-245,

APPENDIX I

SECTION A: Introduction.

The demonstration that follows is based on discussions with
Levin. We will describe his search algorithm and show that it
satisfies the theorem.

Before giving the proof, we need some essential background.
First, the concept of a Kolmogorov-Uspenski machine (1958).

An ordinary universal digital machine is one that can
simulate any other digital machine if it is given a description
of it. Suppose x is a finite binary string and M is some
machine. Then M(x) will be the output of M4 for input x.

M(x) may not always exist.

MY is called a "universal machine" if when M'is given D; ,
a finite binary string that describes M; , ¥Y can imitate the
behavior of M, . For all possible x, M (D;jx) = M;(x). D;x is
@ string formed by string D; followed by string x.

Ordinarily no relationship is stipulated between the time
needed to compute M (x) and that needed to compute MU(D;X) .
In an ordinary universal machine, we are concerned mainly with
the fact that M’ ss program(s) to compute a certain string are at
most only a constant number of bits longer (i.e. the length of Dy
longer) than the length of M;’s program(s) to compute that
string.

A universal Kolmogorov-Uspenski machine (KUSP machine), M
is a kind of universal machine with an additional property: we

can always find a description D, of M; such that for all X, the

1

time needed to compute M' (D;x) 1s not more than a constant

factor, C, larger than the time to compute Mg;(x)., C; is a

function of M; and M' , but is independent of x. We also have
the simulation condition M° (D;x) = M;(x) .

A universal Turing machine can perform this time simulation
only of Turing machines having no more tapes than itself.
However, a universal KUSP machine can do it for any Turing
machine having a finite number of tapes.

Next we need what is called "Kraft’s inequality". First we
define a "prefix set" to be a set of finite binary strings with
the property that no string of the set can be obtained by
adjoining one or more bits onto the end of another string of the
set.

Thus if 0110 is a member of a prefix set, then 0110l1 and
01100 cannot also be members of that set - nor can Ol1l or Ol or
0. 010 might possibly be a member. If [x;] are the members of a

prefix set, then Kraft’s inequality says

i 2-/0(X3) < 1

(2

Here Q(xi) is the length of the sequence x; — the number of
bits in it. The set of programs, [p,] that causes a machine with
sequential input to output a finite string, then stop, always
constitutes a prefix set.

Now let’s return to the problem of machine inversion. We
have a machine M and a finite binary string x. We want to find p
such that M(p) = x and we want to find it as rapidly as
possible.

Suppose there exists an algorithm, A, that can operate on x
and the description of M and produce p from them . So

AlM,x) = p and M(p) = X.

We will use a simple search procedure to find A. First
choose a small time limit, T. Then make trial values for A by
simulation, using M* . M (eg,M,x) will be a trial to find
A(M,x) . Using suitable values for «;, generate the set of all
solution trials, p,= M= (e¢; 4+Myx) such that the generation and
testing of p; (via M(p;)) takes time & oA

The total testing time for this set is

Z ToAe) o TZ 5~ R
Ne will sho; that the set,[;<ﬂ , generated in this way is a
prefix set, soiz:zﬁma‘) Z 1 and thus the total testing time
for this set of{trials must be < T,

If a solution is found in this set, end the procedure. If
not, then double T (T« 2T) and repeat the procedure. This
doubling and redoubling continues until a solution is found. If
T = T, when we finally find a solution then the total search time
will be T, + 2T, + =Ty eee< 2T, .

This is the essence of the search procedure.,

Section B gives a more detailed program for the search,
showing how the sets of trial strings]ic(;] are generated.

Section C shows that each set,[e<;| generated in section B
is a prefix set and includes all o¢; that result in p,; “/s that can
be generated and tested in time X T.

Section D compares the time needed to find the solution to
M(p) = x using the search procedure of Section B, with the time
required by the algorithm A. It shows that the search of section

3 is slower than algorithm A by less than the constant factor

22(@”)H -C5 » which completes the proof.

SECTION B. A detailed search procedure for solving

M(p) = Xx.
le T
2.

T <« 2T t Reset clock to zero: also reset test string,~, to O
(<= ()

3. Start to compute p = M" (e¢,M,x)

If, before clock reads T27%®Y M has read all of o and

requests another input bit, then keep feeding it 0’s (i.e.co<e™Q)

whenever it asks for more input until it either stops or until

the clock reads TZ‘XQ‘) whichever is sooner, If the latter is

true, go to 6.

4, Begin testing p. If we are able to verify that M(p) = x

before clock reads T2 %€’ , exit with solution to search

problem!

5. If e<is all 1’s, we’ve exhausted all = “s for this T value.

We need a larger T. Go to 2.

6. Reset clock to zero. Generate a new ©< by changing the

leftmost 0 in o< to | and discarding all bits (if any) to the
right of that 1., Go to 3.

7. End of program.

A possible sequence of o< values that could be generated by

this program for a particular value of T3

ods ¢ 0000
=, ¢ 00010
as, ¢ 00011
ot 001000
oL 3 001001
o< 00101
ot 00110
%3 001171
oGt 01

oy 3 10

o8 110
o8 111

o’

SECTION C. We will first show that for any particular T
value, the set [e;] is a prefix set.
From the procedure of Section B, it is clear that the
strings, = are of only two kindst those for which MY reads all

of o and stops in time less than T2™2<®

and those for which
it does not stop, but reads as many bits as possible up to that
time. In either case, if we concatenate one or more bits onto o,

M* would not be able to read the extra bits of this string in

time TZ‘QGH) so those augmented strings cannot be members of
the set. Since no member of the set can be an extension of any
other member, it must be a prefix set.

Next we will show that the set [e<;| is a "complete" prefix

2 ICD)

set in the sense thatp 2 1 . This implies that there is

no new string that could be added to the set and have it remain a

®4) would be greater than 1 -

prefix set, since the§: 2
violating Kraft’s ineqLality. Given a complete prefix set, every
possible string must be either a prefix or continuation of a
member of that set. The set 00,0!,1 is a complete prefix set: we
note 277 + 27 + 7' =1 . The set of x;’s listed at the end
of Section B is also a complete prefix set.
Lemma 1¢ For the set [e;] generated in Section B for some

value of T3

fﬁz‘““ﬁ = D(e¢;) Here D(o) is the value

—
of e¢; taken asJa binary fraction. For example,
D(10110) = 2" + 27 + 2% ,10110 in binary notation. Lemma I

is readily proved by mathematical induction, starting with o,

which is always a finite sequence of zeros.

If o, 1s the last member of [c%{] we note that o, must

i

consist of a finite number of 1/s - say just k of them,

From Lemma 1,
T T =l

Zz—ﬂog) I e B I P
J=o

since fR(<,) =k we have
iz—ﬁ(dj) =]_2"'< +2-k = | and sO [b<-,] must be a
J=o

complete prefix set.

Next, we will show that if M (e M,x) = p and M(p) =X
can be both together computed in time z 7272 | then o< must
be in the complete prefix set Dx{] generated in Section B for
time limit, T.

Since the prefix set [=;] is complete, =¢ must be either an
extension or a prefix of some member of [e<;] . Members of [°<{]
are of two kinds: #stopping" members, o; , are those for which
W™ (o M,x) stops within the time limit. Otherwise, o¢ Is a
“nonstopping" member. If o< is an extension of a stopping member
of [;]+ it must be identical to that member. It can’t be an
extension by | or more bits of a non-stopping member because this
would exceed the time limit.

Similarly, we can show that no member of [=] can be an
extension of &€ by one or more bits. The only possible conclusion

is that o¢ must be a member of [e;]

‘1

12

SECTION D 'In Section A we showed that if T = T, when
we found a solution using the program of Section B, then 2T,
would be an upper bound for the solution time of the entire
program.,

Suppose (3 is a code of algorithm A for KUSP machine " .
i.e. for all M and x, A(Myx) =M™ (@,M,x) and

(Time for M'(@ ,M,x)) < C,-(Time for A(M,x)).

Generally there will be many codes, ﬁ s having these
properties.

Let T, = Time to compute M“(p ,M,x) + Time to test M(p) = x.

Let @, be the code p for which Tg- 2°®) is minimum.

The search algrithm described will be successful not‘later
than the time at which T, = Tﬁn 22‘3") and =: =34 4 since

these conditions give M(p;) = x and therefor an exit from step

2.
The total search time is <2T, which is <2T,_ 248w
From the definition of T@ﬁ s this is
< 2%@m)*l . (Time for M (g, ,Myx) to compute and test p)
which is

< pR@mrt (C, Time for A(M,x) to compute and test p)
That the search algorithm described takes time that is only
a constant factor longer than any other algorithm, A , is Levin’s
%econd theorem.
The factors 29“%0+‘ and C, tell how much slower this
search is than algorithm, A. These factors are both independent

of M and of x.

APPENDIX II
A search procedure for finding p such that M(p) = maximum,
within time limit, 7 .
1. Guex €—0° : set clock to zero: also set test input
string o< to zero (®o<=0).
2. Start to compute p = MX (o< M,7)

If, before clock reads 7‘2-1“0 . ME

has read all of o< and
requests another input bit, then keep feeding it 0's (o<<«=<0)

whenever it asks for more input, until it either stops or until

the clock reads 7“2—9“*) - whichever is sooner. If the latter
occurs, go to 5.

3. Begin evaluating p by computing G= M{(p) . If this is
computed before clock reads 7:2—£ax) end G > Guex , then update
Gue= by Guex <= G.

4. If o< is all 1's,we’'ve exhausted all o 's for this 7~
value. Exit this program. Otherwise, go to 5.

5. Reset clock to zero. Generate a new ot by changing the

rightmost 0 in o< to 1 and discarding all bits (if any) to the
right of that 1. Go to 2.

6. End of program.

We‘will now calculate the time needed to find p and G this
way and compare it with the time needed by the algorithm A to
find the same p and G

Let (3, be the shortest string such that

ME (@, M, 7) = A(M, 7-27%@)/cy) and

Time for M=® (@M.M.T) < Ca -Time for A(M, ‘T-2'J(P")/CA)

13

