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CHAPTER 41

A Progress Report on Machines to
Learn to Translate Languages
and Retrieve Information*

R. J. SOLOMONOFF

Zator Company,[40iMt. Auburn, Cambridge 38, Mass.

I. INTRODUCTION

During the last year and a half, work has progressed on a project
todevise a machine to make inductive inferences in certain situations,
The present paper will report on those aspects of this work that
seem relevant to mechanical translation and information retrieval.

Most of the recent work on this project has been on inductive
inference techniques applied to ‘‘formal languages.”” A formal
language is defined to be a finite or infinite set of finite sequences
of symbols. Each such sequence is called an ‘‘acceptable sentence.”
The symbols themselves are called “‘words,’’ and are to be taken
from a finite vocabulary of words. A ‘‘grammar®’ of such alanguage
may take the form of a set of rules by which all sentences in the
language may be generated, or a grammar may take the form of a
test to determine if a proposed sequence of words is, indeed, an
acceptable sentence.

N. Chomsky (1,2) has described three types of formal languages
of increasing complexity and has investigated the properties of
each of them. The recent work on inductive inference has involved
the language type of intermediate complexity, called a “phrase
structure language.’’ In a certain large subclass of such languages
(namely, the ones whose grammars do not employ context-dependent
substitution), methods have been devised for discovering the grammar
of a language after one has been given a finite set of acceptable
sentences in that language (8,4). The training situation under
which these grammar discovery techniques will work is not a very
practical one, but the methods do suggest other more practical

*Work supported by the U. S. Air Force Office of Scientific Re-
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942 ADVANCES IN DOCUMENTATION, VOLUME III

approaches to the problem. The deficiencies of the present methods
of grammar discovery, as well as the methods by which these defi-
ciencies may be overcome, will be discussed later,

Grammar discovery is a special case of the more general problem
of inductive inference, in which we are given a set of examples of
some of the members of a class of objects, and we must try to
devise a general rule to describe all members of that class of
objects.

The most complex of Chomsky’s grammar types, called the *‘trans-
formation grammar’’ appears to be adequate for expressing most of
the rules of English grammar. It also appears to be possible to
express most of the English language with a phrase structure gram-
mer, but more grammar rules would be required—more than for an
equivalent transformation grammar.

The concept of language has been generalized to include any
patterns that might be of interest in inductive inference. In par-
ticular, it has been possible to lock upon the problem of learning
to translate between two languages as being identical to the prob-
lem of discovering the grammar rules of a third language of the
more general type. There is a more exact discussion of translation
learning in Section 6 of Ref. 3, and we shall discuss this problem
in Section II of the present paper.

Another use of the language concept is in information retrieval,
A very simple example is the mechanization of the assignment of
descriptors or other search indices to documents, abstracts, or
titles of documents. Suppose we have a set of documents about
sulfur refining. Each of these documents may then be considered
as a single sentence in a language of unknown grammar, In certain
cases, we can discover a grammar of such a language, and thereby
implement the mechanized assignment of documents to the category
““sulfur refining.’’ Section Il discusses the problems that must be
solved before such a mechanization of descriptor assignment can
be realized in any useful way.

The techniques for grammar discovery that have been devised,
and the new methods that are being investigated, all consist of
well-defined deterministic rules. As such, they can be used as
instructions for present-day general purpose digital computers. It
is clear, then, that all of our work on devising rules for discovering
grammars or discovering formation rules of patterns of more com-
plex types is immediately applicable to the programming of present-
day computers to accomplish these tasks without human intervention.
The practicality of such programming at the present time will be
discussed.

In the present paper, when we speak of a “machine” to accomplish
a certain task, we will refer not to a physical mechanism but to a
set of lnstructlons by which a general purpose dlgltal computer
could be made to accomplish this task.
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II. A MACHINE TO LEARN TO TRANSLATE LANGUAGES

Ideally, we would like to have a machine of the following type:
The machine is given a large number of sentences in a language
that we will call L,. For each of these sentences in L, the ma-
chine is also given the sentence in a second language L, that is
an acceptable translation of the sentence in ;. The machine then
analyses this set of sentence pairs, and deVISeS a set of rules
that relate a sentence of L, to the corresponding sentence in L.
If we then present the machine with an entirely new sentence in L
(using, of course, no words or meanings of words that have not
already been presented to the machine), the machine will use its
set of rules to translate this sentence into a corresponding sentence
in L

Clzearly, there will be restrictions on the operation of such a
machine. The sentence pairs upon which the machine bases its
rules must be sufficiently numerous so that they include in their
structures all of the translation rules for the two languages. The
translations will not be very good ones if we limit excessively the
complexity of the translation rules that the machine is able to devise.

At the present time, we cannot construct such a machine. The
following discussion will describe a machine that we can construct,
which appears to be a significant step in the desired direction. We
shall also discuss the problems that must be overcome before we
can build the machine that we would like.

In the analysis method used, we consider two languages, L, and
L,, such that there exists a translation rule between them. In the
simplest case, this will mean that there is a one-to-one correspond-

ence between the acceptable sentences in L and the acceptable
sentences in L

Let us then construct a third “language "L 30 10 the foHowmg
way: The ‘‘acceptable sentences” in L, considt of ordered pairs
of sentences. The first sentence ia each palr is a sentence from
L, the second is the corresponding sentence in L,,.

To speak of L, as a ‘“‘lanugage’’ implies a certain generalization
of the concept of language. The ‘‘words’’ of L, may be pairs of
ordinary words: the ‘‘phrases’’ of L, may be pairs of ordinary phrases-
—or there may be no useful way to divide the sentences of L,
into words and phrases.

Knowing the grammar of L, will then be equivalent to being able
to translate from L, to L,. Here, ‘‘knowing the grammar’® may
mean that if a proposed sentence pair is given us, we can use the
grammer rules to determine whether that sentence palr is in L, or
not. Another, more useful kind of grammar is one that gives methods
to" determine all possible legal sentences that could contain a
certain fixed phrase as part of them. In this latter case, we need
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only present the grammar rules with a sentence from L, and if the
grammar rules are to complete this partial sentence of L, to form
an acceptable complete sentence in L,, they must give us the
translation in L, of the sentence in L.

The above discussion would be of little interest if the grammar
rules of L, were unreasonably complex. However, if L and L,
are phrase structure languages, it is sometimes possible to look
upon L, as a kind of generalized phrase structure language. It is
also sometimes possible to devise translation rules utilizing a
translation language L, which is a phrase structure language, in
which neither L, nor L, are phrase structure languages. . In all
such cases, L, is included in L,. A simple example of such a
situation is one in which L, and L, are identical, and are es-
sentially non-phrase structure languages. In such a case L, is
not a phrase structure language, yet it can be easily imbedded in
a larger L that is a simple phrase structure language.

At the present time, we can construct a machine that will be
able to discover the grammar rules of any phrase structure language
not employing context-dependent substitution. To discover the
grammar of such a language, the machine must be first given an
‘‘adequate’’ set of sentences in the language. The machine analy-
ses these sentences, then devises various hypotheses as to what
the grammar might be. The machine then uses these hypotheses to
create hypothetical ‘‘trial’’ sentences to test the hypotheses.

These trial sentences are presented as one output of the machine,
An external ‘‘teacher’’ is required to tell the machine which of the
trial sentences are acceptable sentences within the language of
interest.

If there are two languages, L, and L,, such that there exists a
suitably generalized phrase structure language that can translate
between L, and L,, then we can at the present time, construct a
a machine that will learn to translate between L and L.

Since much of English, and perhaps much of some otherlanguages,
are expressible by phrase structure grammars, it would appear to be
worth while to construct such a machine. However, let us examine
more carefully the characteristics of such a device. '

First, many of the phrase structure grammar rules that have been
constructed for English employ context dependent substitution. At
the present time, we do not know whether an adequate set of phrase
structure rules not employing content dependent substitution can
be devised for any pair of existing ethnic languages. Even if we
had such a pair of ethnic languages, the number of questions (i.e.,
pairs of trial translation sentences) would be quite large, so that
it would probably be impractical to utilize a human teacher to re-
spond to the machine’s questions. A human teacher would be too
slow and so the learning would take too much time.

A further factor that rules out a human teacher is the fact that
any errors made by the teacher are likely to make it impossible for

8°?
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the machine to discover the correct translation grammer., We would
find few humans who felt they knew translation well enough to be
able to decide whether a set of translations of a very large set of
sentences were right or wrong., That we would be able to find
such a human who would make no errors is fairly unlikely.

Another serious difficulty is that when we use a phrase structure
grammar for English, the number of grammar rules is quite large.
The number of phrase structure grammar rules needed for translation
is also likely to be very large, so the amount of time needed by the
machine, and the number of questions it would ask would be cor-
respondingly large.

At the present time, however, it is possible to devise wholly
synthetic languages that are intertranslatable through a phrase
structure formalism. In cases in which we know the ‘‘translation
grammar®’’ we can set up machines to act as teachers. These ma-
chines can answer questions very rapidly, and need make no mistakes.
As a result, if we already know the phrase structure translation
rules of a pair of languages, we can teach them to a grammar dis-
covery machine through a suitable training sequence., This is as
well as we can do at the present time.

How can we best overcome the deficiencies of our simple translation
learning machine? Two closely related methods have been investi-
gated to some extent, and are both quite promising,

The first method involves the concept'of *‘approximation lan-
guages’’; the second, the concept of ‘‘stochastic languages.’’

Suppose we were given a large set of sequences of symbols that
were known to be ‘‘acceptable sentences,’” and another large set
of strings of symbols that were ‘‘unacceptable sentences.’” One
kind of problem of devising an ‘‘approximation language’’ would be
to find a phrase structure language of limited complexity (e.g., one
with less than twenty rules in its grammar) such that as many of
the acceptable sentences and as few of the unacceptable sentences
as possible were included in the language described by the grammar.
We must, of course, assign suitable weights to the inclusion and non-
inclusion of sentences in the language, so that we have a suitable
“goodness of fit’’ criterion for any language that we may try. Our
goal, then, would be to find a language that fits the sentences in an
optimum manner. We can associate with each language a probability
of correctness for its predictions of the inclusion or noninclusion
of various sentences in the set of interest.

It will be noted that the problem of devising an approximation
language to fit a set of sentences bears a close correspondence
to the problem of devising an optimum curve to fit some data points.
Limiting the complexity of a language corresponds to limiting a
curve to, say, five adjustable parameters.

Applying the approximation language idea to mechanical trans-
lation, we can obtain translation languages (the L, of the previous
discussion) that have relatively few grammar rules, but the trans-
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lations that are obtained are poor. As we increase the number and/or
kinds of grammar rules that are allowable in the translation lan-
guage, the average quality of our translations improve.

In order to learn mechanical translation in this approximate man-
ner, a machine would have to have as initial input data a large set
of sentences in one language and the correct translations of them
into another language. It would also be necessary to furnish a set
of translations that were known to be incorrect. In addition, it
would be necessary to give the machine the desired limits on the
complexity of the translation language. After having been given
this input data, the machine would ask no questions, but would
proceed directly to compute an optimum translation language of the
required complexity.

Approximation languages are discussed somewhat more rigorously
in Appendix I.

The concept of ‘‘stochastic languages’’ is closely related to
that of approximation languages. A stochastic language consists
of a finite or infinite set of sequences of symbols, with a positive
real number assigned to each of the sequences. These numbers
give the probabilities of their corresponding sequences, All se-
quences not previously assigned numbers are given probability
Zero.

One application of a stochastic language is to determine therelative
probabilities of all possible completions of a sentence once we are
given part of the sentence.

If we are given a set of sentences that are all members of some
stochastic language of unknown grammar, then we can, if we know
the a priori likelihood of all grammars of interest, use Bayes’
Theorem to determine the likelihood that any particular stochastic
grammar produced these sentences. In this way, we can determine
the most likely grammar that could have produced the sentences of
interest. It is also possible to use the probabilities of these
stochastic grammars to determine the liklihood that any new proposed
sentence would be created by the same language that created the set
of sample sentences. A more detailed mathematical treatinent of
these ideas is given in Appendix II.

We can use stochastic translation languages to solve the prob-
lem of mechanical translation, given a suitably large set of sentences
and their translations. It is also required that we have some sort
of a priori likelihood assignment to all translation languages that
we might be interested in. As a solution to this mechanical trans-
lation problem, we would obtain, not a single translation of the
sentence to be translated, but a set of possible translations, with
with a probability of correctness being assigned to each translation.
We can, if we like, select the translation of greatest *probability
of correctness’’ and be satisfied with it—or we may ask for a some-
what more complex machine output.
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While an acceptable formal mathematical solution to the above
stochastic language problem can be written (a tentative assignment
of a priori liklihoods to various translation grammars has been de-
vised), a practical solution to the resulting equations has not yet
been found. Present progress on this problem is, however, quite
promising.

III. A MACHINE TO LEARN INFORMATION RETRIEVAL

The information retrieval learning machine described in Section
I could be constructed if we had a workable solution to the problem
of approximate language construction, or the problem of finding an
optimum stochastic language to fit a given set of acceptable sen-
tences. At the present time, it is possible for a kind of retrieval
learning machine. to be programmed on existing computers. How-
ever, such a machine would require a teacher who knew of a phrase
structure language to describe each of the documents appropriate
to each descriptor of interest. As in the case of mechanical trans-
lation, the number of questions asked of the teacher would be ex-
cessively large and any mistakes made by the teacher would probably
make the machine unable to discover the correct grammar.

Approximation languages and stochastic languages are, however,
particularly well adapted to the information retrieval problem. This
is so becuase, first of all, the exact syntactic qualities of a doc-
ument that make it likely to be relevant to, say sulfur refining, are
fairly complex, and it is unlikely that the exact language would be
discovered by a machine of reasonable size, in a reasonable length
of time. However, present work on approximation and stochastic
languages is oriented toward finding languages that will give the
best possible results within the limitations of computer capacity
and computation time.

The finding of exact languages for retrieval is also made less
likely, in view of the fact that the categorizations of documents
that are presented to the machine as a training sequence will not
be performed altogether consistently by the human cataloger.

Lastly, a stochastic language has particular applicability to in-
formation retrieval, in that a machine using such languages will
assign a probability to the relevance of any descriptor to any doc-
ument. A machine of this sort can then be asked for documents
satisfying certain requirements with the user assigning weights to
the importance of each requirement. The machine can then give a
list of documents in order of probability that they will satisfy the
desired requirements. Such a machine would save the user much
time when the bibliographies were very large. Also, the machine
would list the documents most likely to be relevant, even if this
likelihood were extremely low. A machine using nonstochastic
languages would often, in similar cases, list no documents at all. -
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1V. SUMMARY

Some machines have been described that are to be able to learn
to translate languages and to retrieve information from a collection
of documents. At the present time, theoretical work has progressed
to the point at which it is possible to program a present-day digital
computer to learn mechanical translation. However, the pairs of
languages between which translation could be learned would be
very limited. Also, a ‘‘teacher’’ would be required who was able
to translate without error, and was able to answer rapidly an enor-
mous number of questions asked by the machine.

A machine that would learn to retrieve information could also be
programmed at present, but it would have similar limitations.

Work is now progressing in the study of approximation languages
and stochastic languages. By using languages of these types, it
appears to be possible to eliminate the difficulties mentioned above,
and to design physically realizable machines to learn transiation
and information retrieval,

In the information retrieval problem, a machine using stochastic
languages could be programmed to list documents in order of pro-
bability of relevance to a listed set of requirements.

APPENDIX I. APPROXIMATION LANGUAGES

Let R, be a set of sequences of symbols that we want to include
in our language and let R, be a set of sequences of symbols that
we want to be excluded from our language.

If L, is a language, then let N(L,nR,) denote the number of
sequences of symbols that L, and R have in common.

For the language L, the expression a N(L nR,) -bN(L ,~R,)
is one possible ‘‘goodness of fit’* criterion. Here the constants
“a’ and ‘b give relative weights assigned to correct and in-
correct judgments made by language L, . Different ‘‘goodness of
fit>> criteria must be devised for each p0551ble application of the
approximation language desired.

Suppose that [L,] (i =1,2,...,n) is a finite set of languages,
each of which has a ‘““complexity’ less than a certain threshold.
One possible measure of the complexity of a language is the num-
ber of rules in its grammar. To use this measure, we must stipulate
the form in which the grammar may be expressed. Complexity is
discussed at greater length in Appendix II.

OQur problem, then, is to search through the set [L,] to find a
language with maximum ‘‘goodness of fit.’’ Since the set [L,] is
usually very large, we must devise various heuristic procedures to
direct our search into directions that are likely to be successful
as early as possible.
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In some problems we may want to find a language such that the
ratio of goodness of fit to complexity is maximized.

APPENDIX II. STOCHASTIC LANGUAGES

Suppose [a,] (i=1,2,...,n) is a set of n sequences of sym-
bols, that constitutes a sample of n sentences to be analyzed. Each
o; is a sentence and we are trying to find a language which in
some sense best fits this sample. One language that includes all

of these sequences is the universal language, L,. L, contains all
finite sequences of the symbols used in the o,;’s. L, is alsoa
phrase structure language (and a finite state language) of fairly
low complexity, since there are relatively few rules in its gram-
mar, if it is expressed in the form of substitution rules.

While it is clear that L, “*fits*” the set of sequences [a ], in the
sense of including all of them, it is also clear that L, is not par-
ticularly characteristic of the set [oci], since L, includes any other
sets of sequences utilizing the same set of symbols.

Let us consider L, a finite language consisting of all of the
sequences in [a;] and no others. While it is clear that L, is very
narrow in its specification of the sequences of [« ], it is also
clear that if n is very large (as it will be in most practical cases),
the description of L, (i.e., the grammar of L ) obtained by listing
its members will be an exceedingly ‘‘complex’’ description, in the
sense of having very many ‘‘grammar rules.,”’

It is also clear that neither L, nor L, is any good for extrapolation
from the initial set, [& ], though for different reasons.

What we seek is some sort of compromise between L, and L.
We want a language that, in some sense, specifies the set [« ] as
narrowly as possible, and yet we want the description (i.e., the
grammar) of this language to be as simple as possible (i.e., contain
few rules).

A particularly useful quantification of the notion of ¢‘specificity”’
is given by stochastic languages. Suppose L; is a stochastic

language that assigns probability p,, to the sequence « ;. Further-
more, suppose the p,.’s to be normalized over all sequences in-
cluded in Ly, i.e., 2, p;; = 1.

If we select sequences from an L; at random, and the probability
that sequence. o ; will be chosen is Pji, then the probability that
the entire set [& ;]'will be chosen in any order by n selections from

LJ. is:

n
. PI‘([O(. ille)=n! H pji
k i=1



950 ADVANCES IN DOCUMENTATION, VOLUME IiI

We denote this quantity by P,. This is the conditional probability
of the selection of the entire set [a ], given L,.

The language L, that ‘‘most narrowly specifies’ the set [a ]
is defined to be the one whose P, is maximum,

We will use the a priori likelihood of a language as a quantification
of complexity. Simple languages have high a priori probability;
complex languages have low a priori probability.

Designate Q, as the a priori probability of language L, i.e.,
Q, = Pr(L;). Then

Q;P;

Q:iP;
i

Pr(L, | [ot,]) =

is the a posteriori probability that L, generated [o;]. The sum-
mation extends over all possible values of i.

Suppose 3 is a sequence of symbols. B may or may not be in-
cluded in the set [« . P;3 is the probability assigned to sequence

3 by language L,. Then our system would assign the value

Z QiP;py g
]

2. QF

to the probability that 8 would be generated by the same language
that created the set [« 1.

The summations extend over all possible values of j. It is to be
noted that the L,’s are mutually exclusive causes in the sense that
only one L, was the cause of the set [« ].

In order to make this equation more concrete, some examples of
stochastic languages will be given. These will make possible the
evaluation of the p,’s. We shall also discuss some possible
methods of assigning Q,’s to various grammars.

A kind of stochastic language that has been studied at great
length is the Markov chain. In one form of Markov process, we have
a machine that is initially in state S;, but may eventually pass
through one or more of the n states S, (i =0,1,...,n —-1). From
state S,, the machine may pass to certain of the n states. From
this new state, the machine may pass to any of several states,
and from there to any of several states, and so on, until it has
returned to its initial state, S,. In passing from one state to
another, the machine emits transition symbols, a; (j=1,2,...,m)
The strings of symbols emitted in the intervals between returns to
the initial state, S,, constitute acceptable sentences in a stochastic
language.
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The rules for the transitions between states and the emission of
transition symbols are simple probabilistic rules. If the machine
is in state S;, then the probability that it will goto S next is given
by the fixed matrix element M, .. If the machine passes from state S,
to state S, the probability that it will emit transition symbol a,
is given by the constant T

If the transition symbols’ are English words, we can construct a
stochastic grammar that generates sentences very much like English.
Chomsky has shown (Ref. 1, Section 2.3) that a deterministic
Markovian grammar cannot be an adequate grammar for English. It
is likely that a stochastic Markovian grammer is likewise deficient.

A more interesting grammar type is the stochastic phrase structure
grammar. One way to describe a deterministic phrase structure
language (Ref. 1, Section 38.2) is to give a single initial string of
symbols, and a set of substitution rules for various symbols. After
the substitution rules have been applied several times, a string of
of symbols will result in which no further substitutions can be
made. An example of a simple deterministic phrase structure lan-
guage is one that starts with the initial symbol S and has the fol-
lowing set of permissable substitution rules:

S—AB A—s Ac B——>cA
S—Bd A—cB B—b

A——>sag

Here we read ““S—>AB”’ as ‘‘S may be replaced by AB.”
A permissable derivation of an acceptable sentence is:

1. S 5. ccAcA

2. AB 6. cccBcA
3. AcA 7. cccBea
4. cBcA 8. ccchea

The last string of symbols, cccbea, is an acceptable sentence,
since we can make no further substitutions in it.

It will be noted that for each of the symbols S, A, and B, there
is more than one substitution possible. By assigning probabilities
to each of these substitutions, we describe a stochastic phrase
structure grammar,

A possible assignment of probabilities in the previous grammaris

S—AB, 0.1 A—sAc, 0.2 B—cA, 0.3
S—Bd , 0.9 A—scB, 0.2 B—d , 0.7
A—sa ,0.6

The number written after each substitution rule is the probability
value assigned to that substitution. In the derivation of the sen-
tence cccbca, the substitutions S—sAB, B~-cA, A—> cB, B—
cA, A—>cB, A—>a, and B—b were used in that order. These
substitutions have the respective probabilities of 0.1, 0.3, 0.2,
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0.3, 0.2, 0.6, and 0.7. The resultant probability of the sentence
ccchea is

0.1 x 0.3 x0.2 x0.3 x0.2 x0.6 x 0.7 = 0.0001512

One way to assign an a priori probability to a stochastic phrase
structure language is to first assign an a priori probability to the
corresponding deterministic phrase structure language. Associated
with each such deterministic language is a continuous multidim-
ensional space of stochastic languages, each point of which cor-
responds to a set of possible values of the substitution probabilities.
We may assume a uniform a priori probability distribution over this
space.

pThe problem of assigning an a priori probability to a stochastic

phrase structure language thereby becomes one of assigning an a
priori probability to the corresponding deterministic phrase structure
language.

A possible method is to make the a priori probability of a phrase
structure language some decreasing function of the number of sub-
stitution rules in the simplest grammar (i.e., having the fewest
rules) of the language.

If we restrict our grammar rules to binary substitutions (of the
form A — Bc, then there are

(m(m+n)(m+n+1)>

r

grammars of phrase structure languages that have r substitution
rules, n terminal symbols (symbols for which no substitutions can
be made) and m intermediate symbols (symbols for which substi-
tutions must be made). It can be shown that confining ourselves to
binary substitutions imposes no restrictions on the kinds of lan-
guages than can be generated.

We have the additional constraint that r > m, since each inter-
mediate symbol must have at least one substitution rule associated
with it.

It should be noted that the formula given above is really an upper
bound for the number of grammars, since many of the languages
described by the grammars included in the formula are identical to
each other. Also, many of the languages included may be described
by simpler grammars.

In order that the total a priori probability of all languages under
consideration be unity, it is necessary that the a priori probability
of languages decrease significantly more rapidly with r than does
the number of possible grammars. For this purpose, an upper bound
on the rate of increase of the number of grammars as a function of r
may be all that is needed in order to devise a suitable a priori pro-
bability assignment.
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