Preprint from 1957
I RE cConvantron tho“d-l

Section on Infermatton

Weer/,

SUMMARY

The machine described is designed to
operate as human beings seem to. Inductive
inferences are made by classifying events and
the outcome of these evenis within suitable
categories. The inductive inference in the
individual case is made on the basis of the
average behavior of events within the category
used.

Accuracy of inference is largely depend-
ent upon how good the categories are. Most of
science can be wviewed as attempts to find use-
ful ways to categorize phenomena.

The inductive inference machine takes
categories that have been useful in the past and,
by means of a small set of transformations,
derives new categories that have reasonable
likelihood of being useful in the future. These
are then tested empirically for usefulness in
prediction and these new useful ones are com-
bined with old useful categories to create newer
ones. These in turn are tested and the process
is repeated again and again..

A simplified machine was devised to
illustrate the operation of such devices. Since
it utilizes only part of a more complete set of
transformations it performs only relatively
simple learning tasks. Its behavior in learning
to perform some arithmetic operations on the
basis of a set of correctly worked examples has
been analyzed. Operation was described with
almost sufficient detail for programming on a
digital computer.

At even an elementary level of complex-
ity, recognition of structural similarities and
performance of substitutions become natural
developments of the heuristic devices that are
used. At a slightly more complex level,
relations, sets, and hierarchies of sets develop.

i The simplified machine that is described

ere operates on problems in which there is one

nd only one correct answer. By making the
machine operate on statistical training se -
quences and asking for probability distributions

s answers to problems, sensitivity to errors
?n input data is decreased. It is also possible
to programme such a machine to work on the

#)roblem of improving itself.

! Using the more complete set of transfor-
mations, it is expected that these machines will
ultimately be able to prove theorems, play good
chess and answer questions in English. A pre-
liminary analysis of the relationship of these
devices to the work of Chomsky on English
grammar indicates that these machines would
probably be able to recognize the difference

AN INDUCTIVE INFERENCE MACHINE

R.J. Solomonoff
Technical Research Group, New York 3, N. Y.

between a "grammatically correctt and a
"grammatically incorrect" sentence in
Chomsky's best approximation to English, pro-
viding the machine was given a training sequence
of grammatically correct sentences.

1. Introduction

The following will be a description of a
machine designed to perform inductive infer-
ences. Although its methods of operation were
suggested by considerations of human thought
and problem solving, the machine is not meant
to be a model of human thought processes.

While we speak of "a machine®, we must
realize that no such machine has been con -
structed. Instead, a set of instructions have

"been prepared by which certain problems in \/

inductive inference can be solved. In reference
1, Section 3.2.1.6, these instructions are given
with almost sufficient detail for programming on
a general purpose digital computer. The sim-
plified program given is able to work problems
that are solvable using only the heuristic
devices described in Sections 2.1 and 2.2 of the
present report.

We will describe informally the operation
of the machine, using the devices described in
the simplified program of reference 1, as well
as more powerful devices, which are expected
to enable the machine to solve problems of far
greater complexity.

2. Problems presented to the machine
and methods of solution

2.1 Use of N-grams and Prediction n-grams

Information is presented to the machine in
the form of correctly worked examples in arith-
metic. At first, examples illustrating the mean-
ing of "equality" are given:

=10110, =001110, =101, =0110
10110 001110 101 0110

Here, we have the equality sign, followed by a
row of zeros and ones. The row of zeros and
ones is repeated in the row below, indicating
"equality™".

After several examples of this type, we
present the machine with problems of the forms:

=1001 , =01110 , =1
10001 01100 o3

Here, we want the machine to decide upon the
most probable digit to fit into the empty squares.

—

/

-

-



For these problems, a very elementary
prediction scheme can be used. Shannon3 has
shown how we may predict words or letters in
English by the use of "n grams®". An "n gram®
is a sequence of n letters. If we want fo pre-
dict the next letter in the phrase, "Today we ar",
we can study the relative frequencies of the
udigrams" ra, rb, rc, rd, re, etc. If the
digram "re" is 5 times as frequent as the digram
“ra% then we may conclude that the final letier

in the phrase is 5 times as likely to be "e" as
L

We may obtain more accurate predictions
by using larger n grams. If we use "l2-grams"
of the type "Today we ar[]"*, the limitations on
the terminal letter are more severe than when
we used digrams. Note that we consider spaces
as contributing to the 12 characters of the
#l2-gram",

Returning to the arithmetic problems, we
may extend the "n-gram" concept to 2 dimen-
sions. For the problem

= 1001
1dot

the machine may use several possible 2-grams.
Some of them are

0 i}
6 , 11, 1 , 10, 00.

For prediction purposes it uses "Prediction
n-grams®, in which the character that is predicted,
is surrounded by a square. Some tPrediction
Z-grams® are

0 o '
@, @, .o . Go

From our series of examples of "equality®,
it is found that the prediction 2-gram 0 is

consistent with the examples, because wheneyver
the symbol "0" has appeared, the symbol "0Y
has appeared below it. On the other hand, the
Prediction 2-gram, 1 is not consistent,
because when the symbol *1% has appeared, the
symbol to the right of it has sometimes been
win,  sometimes "0", We shall define "Consist-
ency" of a Prediction n-gram to indicate that all
of its predictions, as applied to the examples
given to the machine, have been correct.

By analysis similar to the above, the
machine finds that the Prediction n~grams

, 0 and @ 0 , are all Inconsistent.

this reason, it uses the Prediction 2-gram,

to give us the prediction "0¥ for our first
example,

For the problem
= 01110

o11[]o

The only Prediction 2-gram that is relevant,
that has been Consistentin the past, is the |

L

Prediction 2~gram,

1

so the prediction is "1".

2.2 Use of Ntuples and Structures.

For some more complex problems, it is
possible to use n~grams, but not of a compact
type. Consider the problem

= 0100

dJioo

If we want the machine to realize that the Pre-
diction 2-gram is intimately related to the

# = ¥ gign, we would want it to discover the
Prediction 3-gram
= 0

@

It is natural for the machine to try this Pre-
dictioh 3-gram, since both "0" and ¥ = ¥ are
physically close to the character {o be predicted.
However, if the machine is given the problem

= 10011

rol1t

the discovery of the Prediction 3-gram

= &8a8a¢
o

isn't very likely, unless special methods are
used, (Here the symbol& is used as a spacer
and is not a proper part of the Prediction
3-gram).

A very effective special method involves
the use of Structures and Ntuples.

An Ntuple, is an ordered set of n objects.
In the present context, these objects may be
N-grams, Prediction n-grams, or a mixture of
both. In Section 2.4 we shall allow these ob -
jects to be less restricted in nature. Some
examples of Niuples are:

(38.).( 139, (o)

The first is a 3-tuple; the next a 4-tuple; the
last a 2-tuple.

A Structure is a set of instruction for
taking the members of an Ntuple, and moving
them around with respect to another in a certain
way, so as to produce a new N-gram or Pre-
diction N gram, that is a combination of the old
ones,

A Structure can be defined by a coordinate
grid, with integers in various squares of the
grid¢

An example of a Structure iss



To operate on the 2-tuple, (1, 0 ) with
this structure, we place the first member of the
2-tuple over the 1, and the second member over

the 2, to obtain the N-gram

0
1

. If we operate on the 2-tuple ( 0 1, = ) with
this structure, there is some ambiguity. We
can place either the "0" or the "1% over the WI¥
of the structure. Thus we obtain either

o1 °F o1

In the case of more complicated Structures
and N-tuples, there may be overlap of some of
the N~grams or Prediction n~grams. If the
characters that overlap are identical, there is.
no problem, but if the overlapping characters
differ, the resultant configuration is discarded.
Another example of a structure is

2]1] [s]

I

We may use il to operate on the 3 -fuple

a

(1’ 1, a B )
to obtain : -~
a a ‘ )
l1lap , alaP , 111 aBf ,al ap)
1 1 1 1
Another interesting kind of Structure is
1, 3

It operates on the 3-tuple ( ca, B, é]) to
obtain the single Prediction N-gram

€ a

. The B does not appear, since the figure "2" does
not appear in the Structure.

Returning to our problem, the machine

finds it very natural o construct the 2-gram
| (=, 2)
0

This is because the Prediction n-gram g has
been useful in prediction in the past, and is
likely to continue to be so. The character " = #
appears because any individual character that
has appeared in examples has fair likelihood of
being useful.

. Of course the machine constructs many
other 2-grams, which are as likely apriori to
be useful as is the above, but they are soon
discarded, since they dg not yield Prediction
n grams that turn out to lbe useful in prediction.

The structures

El ’ ‘ and are all fairly

simple, and therefore good structures to try.

If operates on ( =, 8 ) the Prediction

3-gram = 0 is obtained, and it turns out to be

useful in prediction.
or this reason, the machine remembers
that and (= , 0 ) have been a useful
0 .
Structure and 2-gram, respectively, and it tends

to use them in the future, in constructing trial
Prediction n-grams.

To solve the problem
= 10010
11010

The machine will use the structure, EE@
(which is "close" to the useful structure ]D-:@I )
to operate on the 2-tuple -

’ 0
( = s 0 )
to obtain the very useful Prediction 3-gram
=80

[o]

2.3 The Use of N-gram Sets, Prediction n-gram
sets and N-tuple sets.

Problems solvable through the use of N-
grams, Prediction N-grams, Structures and
N-tuples, are of very limited complexity.
Suppose the machine had been given examples of
equality, using only the symbols "0® and "]1".
We then give the machine the problem:

= 2101

Oi1o01

It is unable to solve this problem, since it
cannot yet have learned the Prediction 3-gram,

=

A way out of this and many other diffi-
culties is afforded by the use of sets of the
devices of the previous seétions.

An“N-gram set,“ is a1n unordered set of
N-grams. An example of such an N~gram set

is:
0 1 2 3 = +
{10 1 * 2°* 3’ =° 4

n
4 A"Prediction N gram set is an unordered
set of Prediction N grams. An example is

By e

An"N-tuple set'is an unordered set of N-
tuples. An example is '

(-0 (e ) ) )]

A 2-tuple set corresponds to what we would



ordinarily call a "binary relation". For ex-
ample, the relation "larger than' would corres-
pond to the set of all ordered pairs of objects
for which the first is "larger than" the second.

We may operate on N-tuple sets with
Structures, to obtain N-gram sets or Prediction
n-gram sets. If the structure operates
on the N-tuple set that was given as an example,
the Prediction n-gram set

0 1 ol [
[=0' =@s =v =,, =E8]9=01 =[9r=1:l

is obtained.

The Cartesian (or Direct) product of two
sets, yields a 2-tuple set, For example, the
Cartesian product of the 1-gram set [0, 1, 2
and the Prediction 2-gram set

(9 1]

is the 2-tuple set

[co. 00 o 1o § D)@ @)

It is also useful to take the Boolian product
of various sets. This can be done in at least two
very different ways. The first way results in a
set, the elements of which are those that are
common to the two product sets. This type of
product of the 2-gram sets ‘

0 1 2 3 a2 3 4 5
r 122 3] 3¢ |2232 405

would be the 2-gram set
2 3 ]
2* 3

To form the other kind of Boolian product,
we first note that to every N gram set, there is
a corresponding set of examples to which that
N-gram set applies. The correspondence is
reciprocal, though there are certain N gram
sets that are equivalent to each other. For ex-
ample, if only the characters 0, 1 and = have
evér occurred, then the N gram sets

0 1]and o 0o o0 1 1 1
0,1 00,01, 0=, 10, 11, I =

are equivalent,

This second kind of Boolean product of two
N gram sets results in an N gram set such that
the set of examples to which it corresponds, is
the set of examples held in common by the two
sets of examples that correspond to the two

product N gram sets. . -

It is important to note that these two kinds
of Boolean products are significantly different,
and are used to accomplish di¥ferent effects.

It is possible to show that all of the oper-~
ations described up to the present time, are
fairly limited in the kinds of Prediction n gram
sets that they can produce. It might be thought
that the Boolean sum operation would help in
this respect. While it does, indeed, make

possible the formation of any Prediction n gram
set that is conceivable, this operation produces
too many Prediction n gram sets that are of no
value in prediction, and hence the Boolean sum
operation is of little value.

An operation that does enable the machine
to transcend the limits of its previous operations,
is the "Occurrence operation®. If Gisan N~
gram set, then the notation £ G, denotes an.

N gram set, the members of which are those
N grams of G, which have each had at least one
example occur to which they applied. )

The number of N-grams in $G, is a non-
decreasing function of time. v

If, G consists of the N-gram set
0o 1 2 3 ]
0, ‘1 ». 2, 3

and the only examples that the machine has been
given are ’ ’

=0100 =0 =110and =010
0000, O, 110 010
then the N-grams that form ¢.G, are
8 and i .
As soon as the example’
= 0310
0310

is given to the machine, q:,G contains the N-
grams

1 3
, 1 and 3 .

Let us return to the original problem,
and see just how the above devices help solve it.
The machine is required to formulate the Pre-
diction n-gram (:) when it has never been

0
0

given an example with the N-gram(: 2 )in it.
2

At the outset, the machine starts with
certain built-in N-gram sets, from which it
constructs all of the others. . Such a built-in
N-gram set, is V, which contains all of the
characters that the machine will be ever shown.
In the present case,

va[+,=,0,0,1,2,3 ...
The machine forms the 3-tuple set
Here the sjrmbol )C(.indicates the Cartesian pro-
duct. The 3 tuple set formed, will be
[(@.=: @==)3,=0) @-= 0 @=1)
(A,=2).. etc. ]
Operating on this 3 tuple set, with the Structure

213
1,3

the machine obtains the Prediction n-gram set



=+ == =0 =0 =1 =2 ...etc.]
] E 1 G ] @9 »
This Prediction n-gram set contains the Pre-
diction n~gram =2 , which is what is required

Note that even before the problem
= 2101
O101

had appeared, the above Prediction n-gram set
had been quite useful in prediction since it con-
tained the two Prediction n-grams

= [%} and Ellj

Another limitation of the devices of the
previous section is afforded by the problem of
normal arithmetic addition. If we had presented
addition examples and problems to the machine
in the following form, it would have been able to
learn to work the problems with these limited
devices:

+11011 4+ 0110
0101 1010

1 1011 ogdaag

1 00110 aogood

In the example, the first two rows of digits are
the numbers to be added (in binary notation). The
fourth row is their sum, and the third row con-
tains the “carries”,

This machine would have found Prediction
n-grams like

1 1 1 0 0
1 1 0 1. 0
1 *fflo * 1 (i1 and [O]1
ol
were sufficient to work addition problems.

Suppose this machine had learned to work
addition problems in this way, and we then gave
it some examples and problems like

+010 +1101 +001 411001
111, 1011 011, _ 01110
1001 11000 100 DDD&DD

The machine would not be able to learn to
work these problems unless it had had an inord-
inately large number of examples. This is
because any digit in the sum may depend upon
many digits in the two numbers to be'added that
are quite distant from it.

The method by which N gram sets, Pre-
diction n gram sets and N tuple sets may be used
to learn to solve these more difficult addition
problems, has been worked out to some extent,

but will not appear in the present paper.

2.4 Higher order sets

One of the limitations of the transformation
and combination methods discussed thus fa r, is
their inability to deal with higher order sets -~
sets whose members are themselves sets. Such

devices are of much importance in mathematics,
in logic, and in science. There are some
logical difficulties that may arise if sets are
allowed to be members of themselves. If such
logical difficulties result in a set's being of less
value in prediction, the machine will tend not to
use that set. If thelogical difficulties do not
influence its value in prediction, the machine
will act as though the logical difficulties did not
exist. :

The method by which the machine is made
able to deal with higher order sets, is to re-
define "N tuple" so that any member of an
N tupie may be a Prediction N gram, Prediction
N gram set, N gram, N gram set, N tuple or
N tuple set. This, unfortunately, defines an
N tuple in terms of itself, a practice which is
occasionally legitimate, but is.not so in the
present case.

This difficulty is resolved by defining an
N tuple recursively, i.e. any member of an
N tuple may be a Prediction N gram, Prediction
N gram set, N gram, N gram set, or anything
that has been previously shown to be an N tuple
or an N tuple set.

An N tuple set is, as before, an unordered
set of N tuples. '

2.5 Non-deterministic problems;

Up to this point, the machi+e described
can only work on problems in whiich there is one
and only one correct answer. A more common
type of problem, is one in which there are
several possible answers, each having its own
probability of being correct, with more than one

correct answer being sometimes possible.

Examples of such problems are language
translation , predictions of economic behavior,
weather prediction and information retrieval.

One immediate advantage of such machines
is that small errors in input data do not disturb
machine operation. This is in marked contrast
to the previous type of machine, in which a
single small error in input data could completely
destroy the machine's ability to work large
classes of problems.

A preliminary analysis has been made of
this more complex type of machine. It is very
likely that such a machine would be able to
recognize sentences conforming with Chomsky's5
"phrase structure® grammar, after having been
given a large set of sentences written in this
grammar. The abstractions it would form,
would very probably be those that Chomsky used.
In the case of the more complex, "transforma-
tional®" grammaxr, only a little analysis of
machine behavior has been done. However, it
appears likely that the machine could learn to
recognize sentences in this grammaxr. Very
probably the machine would invent abstractions
differing from the ones Chomsky uses, their
exact nature depending upon the order in which
examples were given to the machine. The



machine would sometimes categorize as "highly
improbable" sentences which Chomsky would
regard as grammatically correct, but false or
meaningless.

2.6 The concept of Utility

In the operation of a deterministic induct-
ive inference madhine," Utility'values are
assigned to each abstraction used. For example
Prediction n grams or Prediction n gram sets
that are "Consistent” in their predictions (i. e.
there are no counter examples to their predict-
ions) are assigned a high Utility, If they are not
Consistent, they are given Utilities of 0. Ab-
stractions like Structures or N ftuples or N gram
sets, etc., are given Utility values proportional
to the frequency with which they are successful
in‘being used to create Consisient Prediction
n grams or Prediction n gram sets.

The Utilities of abstractions are then used
to get the apriori probability of Consistency of a
newly created Prediction n-gram or Prediction
n-gram set. Combinations of abstractions which
are unlikely to lead to Consistent Prediction
n grams or Prediction n gram sets, are not
made.

2.7 A General description of the mode of
operation of the machine

The machine starts out with a small set of
N grams, Prediction N-grams, Structures,
N tuples, N gram sets, Prediction N-gram sets
and N tuple sets, along with apriori Utility
values assigned to all of them.

Using the set of combination and trans-
formation rules that have been partially des-
cribed above, the machine creates a new set of
abstractions from the old set, selecting out only
those combinations and transformations that
have a sufficiently high apriori Utilities - as
given by the Utility transformation rules. The
new abstractions are then evaluated empirically,
in view of their relation to the examples and
problems that have occurred up to that time.

In this way a more reliable empirical, aposter-
iori, Utility is assigned to the abstractions.

All of the abstractions available, are then
recombined as before, and the machine retains
the new abstractions of sufficient apriori Utility.
The process then continues as before, and is
repeated again and again. Each time, new ab-
stractions are created and their Utilities are
evaluated in terms of the examples and
problems.

The machine obtains a constantly increas-
ing number of abstractions, all of which are of
fairly high Utility with respect to the examples
and problems given.

To solve a problem, the machine searches
through its Consistent Prediction N grams and
Prediction N gram sets, in an attempt to find
one that fits the problem. If more than one fits,
and give different answers, the answer associ-
ated with the abstraction of highest Utility is

taken. If the conflicting Utilities are fairly
close, then the answer given will not be very
reliable, but this will not often occur if a
reasonable number of examples are given to
the machine.

3. Present state of developfnent of the machine

A program has been written for the opera-
tion of a machine that has N grams, Prediction
n grams, Structures and N tuples, but not sets
of these abstractions. This program is des-
cribed in reference 1, Section 3.2.1.6. A
detailed description of the operation of the
machine in dealing with a set of specific arith-
metic examples and problems is given in refer-
ence 1, Section 4, as well as in reference 2.
This program is almost sufficiently detailed for
simulation on a digital computer. Some work
must be done on Utility evaluation, however,
before this is possible.” There is some discuss-
jion in reference 1, of methods of Utility evaluat~
ion -- particularly in Appendix IL

Some detailed analysis has been made of
the response of a more complex machine to
problems involving arithmetic addition without
explicity written "carries”. Such a machine
uses abstractions of the type discussed in Sect-
ion 2.3 of the present paper. '

A less detailed analysis has been made of
a machine for use with stochastic problems, and
its ability to recognize "grammatically correct®
sentences in the sense of Chomsky's grammars
bas been studied. For more detail see Section
2.5 of the present paper.

4, Impértant problems that must yet be solved

4.1 The problem of searching for Consistent
Prediction n-grams and Prediction n gram sets
that fit a particular question is probably the
most difficult one. It is, however, a "well
defined intellectual problem" 4 in the sense
that there is a definite criterion for deciding
whether a proposed solution is right or wrong.
The original inductive inference problem is not
"well defined" in this sense. This search
problem is formally quite similar to the problem
of proving a mathematical theorem.

°

Methods by which such "well defined®
problems may be solved, are discussed by
McCarthy 4, Minsky 6, and Newell and Simon 7.
The constrzction,of the trial "characters" and
"methods" ©® appears to be the main difficulty.
It is believed that use of abstraction generation
methods, such as those of the present paper,
will solve this problem.

4.2 Although a set of rules for the manipulation
af the sets of Section 2.3 has been drawn up,
they have not yet been sufficiently investigated.

4.3 The problem of assigning Utility must be
worked out in greater detail.

4.4 The operating program of the stochastic
machine of Section 2.5 has been investigated at



great length, but no specific design has yet been
decided upon.

4.5 Although the methods that have been in~
vestigated for generating new abstractions from
useful old ones may be adequate, this adequacy
must be tested further.

4.6 The problem of realizing physically 'an

inductive inference machine,has been investigated

only a little. Very probably there will be no
difficulty in storing all input data for relatively
rapid access. A human being, receiving
information at the high rate of 10 bits per
second, 8 hours a day, for 1 year, receives
only about 108 bits. It is likely that a computer
can operate fairly intelligently with less than
this amount of input data. A photoscopic storage
device with a. capacity of 3 x 107 bits and a
mean access time of 25 milliseconds is now
under development by the International Tele-
meter Corp. Photographic storage can be used,
since erasing is unnecessary. It is also desir-
able to have most parts of the machine operate
simultaneously, so as to save time, as the
human brain seems to. Little work has been
done on the design of this type of large scale
parallel digital computer.

5. Conclusions

A . program has been written for a com-
puter to learn to work simple arithmetic
problems after being shown a set of correctly
worked examples. Less complete work has
been done on programs for more complex
problems.

6. Acknowledgement

The author sincerely acknowledges the
importance of many enlightening discussions
with M. Minsky and R. Silver. Much recent
work on the subject of the present paper was
supported by the Rockefeller Foundation, at the
Artificial Intelligence Project at Dartmouth in
1956. -

References

1. Solomonoff, R.J. "An Inductive Inference
Machine” August 14, 1956. A privately circulat-
ed report.

2. Solomonoff, R.J. "An Inductive Inference
Machine" to be published in Information and
Control, a new international scientific journal.

3. Shannon, C.E. "Prediction and Entropy of
Printed English® Bell System Technical Journal,
1951, 30, pp 50-64.

4. McCarthy, J. Automata Studies (Shannon,
McCarthy, editors) Princeton U. Press, 1956,
p 177.

5. Chomsky, A.N. "Three Models for the Des-
cription of Language" IRE Transactions on
Information Theory Vol. IT-2, No. 3, Sept. 1956,
pp 113 to 124,

6. Minsky, M.L. "Heuristic Aspects of the
Artificial Intelligence Problem" 17 December.
1956 Group Report 34-55, M.L.T., Lincoln
Laboratory, pp I-1 to I-24.

7. Newell, A and Simon, H.A. *"The Logic
Theory Machine® IRE Transactions on Informat-
ion Theory Vol. IT-Z, No.3, Sept.1956 pp 61
to 79.




