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Abstract

We have employed Algorithmic Probability Theory to construct a sys-
tem for machine learning of great power and generality. The principal
thrust of present research is the design of sequences of problems to train
this system.

Current programs for machine learning are limited in the kinds of
concepts accessible to them, the kinds of problems they can learn to solve,
and in the efficiency with which they learn — both in computation time
needed and/or in amount of data needed for learning.

Algorithmic Probability Theory provides a general model of the learn-
ing process that enables us to understand and surpass many of these
limitations.

Starting with a machine containing a small set of concepts, we use a
carefully designed sequence of problems of increasing difficulty to bring
the machine to a high level of problem solving skill.

The use of training sequences of problems for machine knowledge ac-
quisition promises to yield Expert Systems that will be easier to train
and free of the brittleness that characterizes the narrow specialization of
present day systems of this sort.

It is also expected that the present research will give needed insight in
the design of training sequences for human learning.

∗Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Computer Vision
and Pattern Recognition, Dec. 1989
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Introduction

We will describe a system for machine learning that uses algorithmic probability
to go beyond many of the limitations of current learning systems.

The machine starts out, like a human infant, with a set of primitive concepts.
We then give it a simple problem, which it solves, using these primitive concepts.
In solving the first problem, it acquires new concepts that help it solve the more
difficult second problem, and so on. A suitable training sequence of problems of
increasing difficulty brings the machine to a high level of problem solving skill.

The principal activity of the present research is the design of training se-
quences of this kind.

Current systems for machine learning have several critical limitations. We
will describe these limitations and how our system overcomes them.

For each system other than our own, there are certain classes of concepts
that the system can never discover, no matter how long it searches. This limi-
tation may occur because the system has an “incomplete” set of concepts (not
“universal” in the sense of “universal Turing machine”), and/or, because the
search algorithm is inadequate. Our system, however, is given a complete set of
concepts at an early point in its training. The use of Levin’s search algorithm
(Lev 73, Sol 84) then guarantees that any describable concept will eventually
be discovered by the system.

Another kind of limitation in current systems is the relatively narrow range
of problems they can solve. The algorithm we use is able to solve inversion
problems (such as the P and NP problems of computational complexity theory)
as well as time limited optimization problems (See Section 2 for definitions and
discussion of these problem types). Algorithmic probability theory makes it
possible to express problems of clustering, pattern discovery, design of scientific
experiments, discovery of scientific laws to fit data, etc., as time limited opti-
mization problems. Although a large fraction of problems occurring in science
and mathematics are either inversion or time limited optimization problems,
many of them are not solvable, or even addressable by other learning systems.

It should be noted, however, that one type of generalized time limited op-
timization problem does not appear to be solvable by Levin’s algorithm or any
other that we know of. Part of our research is to find solutions or approximate
solutions to this kind of problem.

The efficiency of a system for machine learning is limited in two ways. The
first is measured by the computational complexity of its solutions to problems.
How much time and/or memory is required? The second is informational ef-
ficiency. How much training is needed for the system to learn? How many
problems or examples are required?

In the particular training environment we have created, the use of Levin’s
search algorithm appears to be extremely efficient in both respects. There are
heuristic arguments for its being within a factor of 4 of optimum, and the
determination of the extent to which this is true is a topic of continued research.
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The following sections discuss different aspects of our system:

1. What is algorithmic probability? Why is it needed? Some successful
applications.

2. What kinds of problems can the system solve? Inversion problems and
time limited optimization problems are defined. They cover a large fraction of
problems in science and engineering.

3. What are “concepts” and how do we select a set of primitive concepts to
start out with?

4. How does the machine use its concepts to solve problems?
5. After it solves a problem, how does the machine use the solution to define

new concepts and update the parameters of old ones?
6. How do we write training sequences of problems that bring the machine

from its initial ability to solve only the simplest of problems to a state in which
it can solve very difficult ones?

7. How does this model relate to other work on machine learning?
8. What is the present state of development of the system? Near term goals,

more distant goals. Time scales for these goals.

1 What is Algorithmic Probability? Why is it
Needed? — Some Successful Applications.

The need to revise classical concepts of probability is strongly suggested by
analysis of human problem solving. When working on a difficult problem, a
person must make choices of possible courses of action. If the problem is a
familiar one, the choices will all be easy. If it is not familiar, there can be much
uncertainty in each choice, but choices must somehow be made. One basis for
choice might be the probability that each choice leads to a quick solution. This
enables us to use a simple search procedure to find the solution rapidly.

The usual method of calculating probability is by taking the ratio of the
number of favorable choices to the total number of choices in the past. If the
decision to use integration by parts in an integration problem has been successful
in the past 43% of the time, then its present probability of success is about .43.
One trouble with this method is that it has very poor accuracy if we only have
one or two cases in the past, and it is undefined if the case has never occurred
before. Unfortunately it is just these situations that occur most often in problem
solving.

By creating an entirely new definition of probability, we have been able to
resolve this difficulty as well as many others that have plagued classical concepts
of probability.

The earliest description of algorithmic probability was in a formal theory of
inductive inference (Sol 60, 64a, 64b). All induction problems are equivalent
to the problem of extrapolating a long sequence of symbols. Formally we can
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do this extrapolation by Bayes’ Theorem, if we are able to assign an a priori
probability to any conceivable string of symbols, x.

Algorithmic probability defines the a priori probability of a string of sym-
bols, x, as the probability that x will be produced as the output of a reference
universal Turing machine having random input. One of the fundamental prop-
erties of algorithmic probability is its relative insensitivity to choice of reference
machine. 1

Though this definition seems distant from the usual, frequency based defi-
nition of probability, it has been proved that in all cases in which probability
is defined by frequency, algorithmic probability converges rapidly to the same
probability values.

Perhaps of most importance: If there is any describable regularity in a body
of data, algorithmic probability is guaranteed to eventually discover that reg-
ularity, using a relatively small sample of the data (Sol 78). It is the only
definition of probability known to have this property.

If l(x) is the number of bits in the shortest program that can generate string
x, then 2−l(x) is a useful approximation to the algorithmic probability of x. The
commonest way to approximate it is to find short programs for x. For any x,
we can always find an “identity program” that is about as long as x itself, but
if x has any pattern in its bits, we can exploit that pattern to devise a program
for x that is shorter than x. A sequence of 1000 one’s, for example, has a very
simple pattern, and it can be generated by a very short computer program. If
the shortest program for x is about the same length as x, then x has no patterns
to exploit — it is completely random.

By using code compression as a criterion, algorithmic probability gives a
truly objective way to detect patterns in data, and becomes a completely ade-
quate basis for the mechanization of pattern discovery.

From considerations of this kind, Kolmogorov (Kol 65) and Martin–Löf (Mar
66) were able to develop the first adequate definition of randomness. Chaitin
(Cha 74) showed how algorithmic complexity (which is the negative logarithm
of algorithmic probability) could give a very clear demonstration of Gödel’s
theorems in mathematical logic, and suggested a much simpler proof for Turing’s
“Halting Problem”.

Some of our earliest innovations in inductive inference theory were the use of
formal languages for induction (Sol 58, 60b), and the invention of probabilistic
languages for more precise prediction (Sol 59). Algorithmic probability was able
to refine these ideas by giving an optimum “goodness of fit criterion” for the
fitting of probabilistic grammars to data (Sol 62, 64b, 75). This was developed
further by Horning (Hor 71).

Another application of algorithmic probability was to Winston’s problem
of learning structural descriptions from examples (Win 75) — obtaining an

1For a more exact definition of algorithmic probability, see Sol 78, or, more briefly, Sol 86,
Pp. 476–478.
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algorithm that was far better than Winston’s in both speed of execution and
efficiency in use of data (Sol 75, Sol 86, p. 490).

Algorithmic probability has given a unified approach to problems of universal
coding, information, prediction and estimation (Ris 84). The applicability of
the maximum entropy principle in statistics was greatly expanded when it was
shown to be a special case of algorithmic probability (Fed 86).

An important non–probabilistic application has been its use to determine
bounds on computational complexity (Pau 81).

For some time after its discovery, the use of algorithmic probability was
plagued by questions of its meaningfulness and accuracy. These were finally
resolved by a proof of the existence of the defined probability as a limit and
a proof of its accuracy and efficiency in use of data (Sol 78). Cover (Cov 74)
showed that if it was used as the basis of a gambling scheme, its yield would be
extremely high.

At first, the apparent difficulty in approximating algorithmic probability
limited its practical application. A real breakthrough was Levin’s search pro-
cedure (Lev 73, Sol 84), using algorithmic probability to obtain solutions to a
very broad class of mathematical problems within a constant factor of minimum
time (These are the P and NP problems of computational complexity theory,
and time limited optimization problems. They are discussed in Section 2.).
Later, heuristic arguments were advanced that for critical problems in machine
learning, the “constant factor” was less than 4 — giving what looks like a very
practical, near optimum system for machine learning (Sol 86, pp. 475 and 482).

2 The Kinds of Problems Solved.

The first kind of problem the system solves is called an “Inversion Problem”.
We are given a string of symbols, s, and a program or function or computing
machine, M , that quickly operates on strings to produce strings. The problem
is to find, in as little time as possible, a string x, such that M operating on x,
produces s — i.e. M(x) = s. For example, find the number x (which is a string),
such that x2 +sin(x) = 25. The P and NP problems of computational complex-
ity theory are all inversion problems of this sort. Solving algebraic equations,
symbolic integration and proving mathematical theorems are all examples of
inversion problems.

Another kind of problem the system solves is called a “Time Limited Opti-
mization Problem”. We are given a program or function or machine M , that
maps strings of symbols into real numbers. We are given a time limit, T . The
problem is to find within time T , a string of symbols, x, such that M(x) is as
large as possible. Many engineering problems are of this sort — for example
designing an automobile in 6 months satisfying certain specifications, having
minimum cost. Having a limited amount of time to devise the best possible
theory to fit our empirical data is also a problem of this type. Perhaps most
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important: The problem of improving our machine’s updating algorithm (See
Section 5) is a time limited optimization problem, so the machine can work on
the problem of improving itself.

A large fraction of all problems in science and engineering can be expressed
as either inversion or time limited optimization problems.

In the present paper we will describe the solution of inversion problems
only. The methods used to solve normal time limited optimization problems
are, however, very similar.

It should be noted that there is one type of generalized time limited opti-
mization problem that is not solved very well by our system or by any other
algorithm we know of. In this kind of problem, we have to find an optimum
value for string x, but there is no sharp time limit. Instead, we have to maximize
G(x) · F (t). Here t is the time we use to find x, and F is a known, decreasing
function of t .

One direction of continued research attempts to obtain better approximate
solutions to this type of problem.

3 What Concepts Are. How to Obtain a Prim-
itive Set of Concepts.

We are using the term “concept” in a fairly general sense. A concept is a
computer program or a fragment of a program. It can be a single computer
instruction or a sequence of instructions. It can be written in machine language
or in any other computer language.

Production systems such as are used in “Expert Systems” can have all of
the power of computer instruction sets. In systems of this sort, a concept is a
production rule or combination of such rules.

A necessary condition for the selection of a set of primitive concepts is that
the set be “complete”. This means that any solution of a mathematical problem
is capable of being expressed as a sequence (or other suitable combination) of
those primitive concepts.

We will begin the training by giving the machine a small, incomplete set
of primitive concepts, that are able to express the solutions to the first set of
simple problems. When the machine learns to use these concepts effectively we
give it more difficult problems and, if necessary, additional primitive concepts
needed to solve them. We continue to give new problems and new primitives
until the machine has a complete set of concepts. After this point is reached,
new problems can be given, but no new primitives are needed.

It is not difficult to devise sets of concepts that are complete. Almost all
digital computers and languages for programming them have complete sets of
instructions. Usually only a small subset of these instructions is needed to form
a complete set.
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Except for the need for completeness, the choice of primitive concepts is not
critical. If a poor set of primitives is chosen, it will require a longer training
sequence for the development of a set of concepts able to solve significant prob-
lems. Once this development occurs, however, the behavior of the system is
fairly independent of the initial choice of primitives.

4 How Inversion Problems are Solved.

To solve an inversion problem, we construct a sequence of trial computer pro-
grams. Each of these trial programs is a sequence of primitive concepts. At first,
each program takes only the description of the problem as its input and gives
a candidate solution to the problem as its output. At later stages of training,
input to trial programs may include information on the operation of earlier trial
programs.

Suppose we are given the function M( ) and the string, s, and the problem
is to find a string x such that M(x) = s . We take A1 , the first in our sequence
of trial programs, and have it operate on M( ) and s to produce x1 , a candidate
solution to our problem. We then test x1 , to see if M(x1) = s . If it does, we
have a solution. If not, we try the next program A2, and so on, until we find a
solution.

In solving the early problems of the training sequence, the system has only
a small number of primitive concepts, and the solutions to its problems require
the combination of only a few of them, so the effective search space is quite
small. In the preliminary training sequence for learning algebraic notation (Sol
86, Pp. 485–486) the first problems took about 343 (= 73) trials to solve — the
next group took about 7 trials each and the final set were solved on the first
trial.

In this initial learning phase the ordering of trials is completely independent
of the nature of the problem to be solved. This “Blindness” of search is similar
to that of organic evolution — but our search and update algorithms are far
more efficient than the mutation and pair–wise recombination used in organic
evolution.2

The most efficient search procedure — one whose expected time to solution
is minimal — tests trial programs (i.e. strings of concepts) in order of increasing
ti/pi. Here pi is the probability of success of the ith trial string of concepts and
ti is the time needed to generate and test that trial.

2In most problem domains, the exponential complexity of blind search seems to make
it impractical for all but the simplest of problems. Heuristic search was devised to cope
with this “exponential explosion”. However, it is not difficult to prove that any conceivable
heuristic search algorithm can be simulated by a blind search in a space of sufficiently powerful
concepts. Our system derives much of its power from this theorem. It must be noted that in
such a system a candidate program must be permitted to have more arguments than simply
the present problem description. Its arguments may include any information obtained as the
result of, and during the execution of, previous candidate programs.
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The computation of probability values for a string of concepts, normally a
very difficult task, is made tractable by application of algorithmic probability
theory. We initially assign equal probabilities to each of the primitive concepts.
Then a program which is a string of such concepts has a probability equal to
the product of the probabilities of its components. If we have 10 primitives
then each will have probability .1 and a string of 5 of them will have probability
10−5.

These initial approximations to pi are very rough. However, after the ma-
chine has solved several problems, new concepts are defined, the probabilities
of old concepts are modified and some of the concepts are linked by conditional
probabilities. These operations occur in the “Updating” phase of the machine’s
operation and are designed to optimize each pi as an approximation to the
probability of success of the ith trial.

Returning to our “most efficient search procedure” using the ti/pi ordering,
we find that while we can approximate pi we can never know ti before the ith

trial, so we can’t make our trials in exact ti/pi order. However it is possible to
obtain something like ti/pi order in the following manner:

First we select a small time limit, T , and we do an exhaustive test of all
strings, spending at most, a time, piT on the ith string.3

If we find a solution we stop. If not, we double T and go through the
exhaustive testing again. The process of doubling and testing continues until a
solution is found. The entire process is approximately equivalent to testing the
strings in order of increasing ti/pi.

This search algorithm was first used by L. Levin (Lev 73) to solve a broad
class of mathematical problems. One of the important properties of this algo-
rithm is that it is easy to estimate the total search time needed to discover a
particular known solution to a problem. If pj is the probability assigned to a
particular program, Aj , that solves a problem and it takes time tj to generate
and test that program, then this entire search procedure will take a time less
than 2 · tj/pj to discover Aj . We call tj/pj the “Conceptual Jump Size” (CJS)
of Aj . It tells us if the machine is practically able to find a particular solution to
a problem at a particular state of its development. CJS is a critical parameter
in the design of training sequences and in the overall operation of the system.

After the system has solved a problem, we usually allow it to continue search-
ing for other ways to solve that same problem, in the hope that it will find a
better solution than the first one found. “Better” in this case means the time
to generate and test that solution is smaller.

3If we only test strings whose piT is greater than the machine’s instruction time, there will
be a finite number of strings to test and the total testing time will be less than T .
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5 How Updating is Done

After several problems have been solved, the machine “updates” itself by cre-
ating new concepts along with their associated probabilities and by modifying
the probabilities of old concepts. This is done by taking the “best” successful
program for each of the problems that has been solved. This will be the pro-
gram that takes least time. The collection of “best” programs is called “the
corpus” — our body of data. We want to extrapolate this corpus to obtain new
programs that have high probability of giving good solutions to new problems.

We first assign a different symbol to each of the concepts, so that the pro-
grams which were strings of concepts, become strings of symbols. A very simple
way to extrapolate such a corpus is to count the relative frequency with which
each type of symbol occurs in the corpus. This set of frequencies gives a proba-
bility distribution on all possible strings of symbols. The probability of a string
of symbols is equal to the product of the relative frequencies of its component
symbols.

While this is sometimes an adequate method of extrapolating a corpus of
strings, we can do much better, in the following manner: Usually there will be
pairs of symbols, for example, AB, such that the frequency of the pair, AB, is
significantly different from the frequency of A times the frequency of B. This
indicates that A and B are somehow related — that the probability of B is
somehow conditional upon whether or not it follows A. We go through the
corpus and examine all possible pairs of symbols. We pick the pair, say CD, for
which the frequency disparity is most significant of all those we’ve examined.4

We then define a new symbol W , which represents CD and we rewrite our
entire corpus substituting W wherever the pair CD occurs. Defining the symbol
W makes it possible to exploit the conditional probability of D following C in
assigning probabilities to programs.

The new corpus is examined for “most significantly deviant pair frequency”
as before, and we define a new symbol, X, to substitute for this pair. We repeat
the operations of defining a new symbol and rewriting the corpus until we can
no longer find pairs that are of “significantly deviant frequency”.

The combining of a pair of symbols is equivalent to combining a pair of
concepts to obtain a new, more complex concept. By iterating this procedure,
we are able to define complex new concepts that combine a large number of old
concepts. For example, we can define the concept ABCD by first defining AB,
then CD, then the combination of these two newly defined concepts to form
ABCD.

The set of symbols in the final corpus and their frequencies of occurrence
is used to obtain a probability distribution on all possible strings of symbols,
and from this, a probability distribution on the computer programs that they
represent.

4A quantitative measure of the significance of this kind of frequency deviation and a more
detailed description of the updating system is given in Sol 64b, pp. 233–240.
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This completes the “updating process”. Our machine is now ready for the
next set of problems.

The method we have used to extrapolate the corpus of “best” programs is
equivalent to finding a probabilistic grammar that best fits that corpus. The
grammar described is perhaps one of the simplest probabilistic grammars that
can create new concepts by combining old ones. There are many other kinds of
grammars that can be used. A probabilistic context free grammar (Sol 64b, Hor
71) would be able to find relationships in our corpus that can’t be found using
simpler grammars. It is also possible to extrapolate the corpus of programs
using any data compression algorithm (Sto 88). Algorithmic probability readily
transforms such algorithms into probabilistic languages.

The discovery and implementation of a better updating algorithm can be
formulated as a time limited optimization problem. Thus with a suitable train-
ing sequence, it is possible to have the machine work on the problem of self–
improvement.

6 How Training Sequences are Written.

The main motivation for writing training sequences, is that without incremental
learning of this kind, it requires too much search time to learn to solve difficult
problems. The task of designing such sequences is very similar to writing “Top
Down” computer programs or writing lesson plans for human students.

To design a training sequence culminating in a particular solution to a prob-
lem, we first examine that solution and break it down into a small number of
concepts or modules that can be combined to produce the solution. Each of
these concepts should be applicable to the solution of other useful problems
as well. We then examine each of the concepts and break each of them down
into useful subconcepts as before. This breaking down into smaller subconcepts
continues until we reach the primitive concepts of our machine.

By linking each concept to its set of component subconcepts, we form a tree
structure which we call a “concept net”, as in Figure 1. (For a discussion of the
relationship of concept nets to neural nets, see Section 7).
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Figure 1. A SIMPLE CONCEPT NET

Let us call the primitive concepts “first order concepts”, and the concepts
one level above them “second order concepts”. An nth order concept is then
defined to be a combination of concepts in the net that are of order less than n.
The first set of problems in our training sequence will be problems that have for
their solutions a combination of a few concepts. These solutions will themselves
be second order concepts.

We define an nth order problem to be one that has an nth order concept
as solution. For our training sequence, we next devise an adequate set of 3rd
order problems. An “adequate” set of nth order problems is one in which each
(n− 1)th order concept has been included several times in the set of solutions.

We then devise an adequate set of 4th order problems, and continue devising
adequate sets of problems of higher and higher order, until we arrive at the final
top problem.

This set of problems in the order in which they were devised will constitute
our training sequence. In the concept net shown, the entire training sequence
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would consist of second order problems followed by third order problems, then
fourth order problems, and finally the top fifth order problem.

In the early stages of its training, the machine will be given only problems of
small CJS (Conceptual Jump Size) - problems that are easy for it to solve. Such
problems will also be easy for the trainer to analyze. He will be able to predict
accurately the detailed response of the machine. During these stages of training,
the machine’s behavior will be similar to that of most “Expert Systems” — its
concepts and solutions to problems will be limited to those anticipated by the
trainer.

At a more advanced stage, we want the machine to be able to break out of
this limitation. This can be done in several ways. One is to allow much time
for “oversolving” problems — i.e. after the machine has solved a problem in a
manner expected by the trainer, it is given time to try to find better solutions.
Another way is to give problems for which the trainer knows only solutions of
large (but practicable) CJS. In searching this large CJS space, the machine is
more likely to find solutions the trainer hadn’t thought of.

Each of these techniques is time consuming and expensive — but a necessary
expense if we want the machine to transcend the conceptual limitations of its
trainer.

Often in constructing training sequences we find that problems we would like
to include have excessively high CJS — beyond the bounds of practical search
times. Usually this is because the probabilities of some of the concepts in the
solutions to these problems are too small.

These low probabilities are an indication of inadequate training for the con-
cepts involved. This can be corrected either by giving the machine more prob-
lems whose solutions use those concepts, or by breaking the concepts down into
subconcepts and giving an adequate set of problems involving those subcon-
cepts.

The most difficult part of training sequence design is the construction of
the concept net. It will be noted that the process of breaking down concepts
into more easily learned subconcepts is a necessary skill of every good teacher.
While it often requires insight and imagination, it is certainly possible to do it
effectively.

7 How This Model Relates to the Work of Oth-
ers.

There have been three superficially different approaches to the mechanization
of cognitive processes:

Heuristic Programming (New 87, Len 82): in which new definitions are built
upon older definitions that have been found to be useful.

Multilayer Neural Nets (And 88, Rum 86): in which neurons of each layer
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are excited by previously learned patterns of excitation of earlier layers.
The Society of Mind (Min 86): in which each new agent builds on the abilities

that older agents have developed. Our research has borrowed heavily from all
of them.

Each of these approaches has its own ways of combining successful abstrac-
tions to form promising new abstractions, and of using them for learning and
problem solving. Algorithmic probability gives a unified technique for analyz-
ing systems of this kind and overcoming many of their limitations. It has been
used to criticize and suggest improvements in the inductive systems of Win-
ston (Win 75) and Lenat (Len 82). Our general model of learning continues
to be invaluable in the understanding, analysis and optimization of each of the
aforementioned approaches to the mechanization of cognitive processes.

Of all work in machine learning, our system is most similar to Lenat’s pro-
gram, AM, (Len 82) but differs from it in important ways. While AM may
have a complete set of primitives, its search algorithm does not exploit that
completeness. There are many kinds of simple concepts that AM can never
discover, no matter how long it searches. Our own system, however, by using
Levin’s search algorithm and a complete set of primitives, guarantees that there
are no describable concepts that it will not eventually discover.

Newell, Rosenbloom and Laird’s SOAR (New 87), as well as our own system
is meant to be the framework of a general theory of cognition. Newell et al,
however, as well as Minsky and Lenat, model their systems on their observa-
tions of human problem solving and concept discovery. Our model of cognition
attempts to optimize the learning capability of our system, independently of
just how people seem to work.

SOAR suffers from a common debility of systems using monotonic reasoning
— the inability to get rid of a once useful concept that has become harmful
in a new problem domain. In our own system, each concept has a conditional
probability associated with each area of application. If a concept is found to be
of little value for a certain problem domain, its conditional probability for that
domain (i.e. the probability of its being applied there) decreases.

Another related area is Valiant’s research on “Learnability of Concepts” (Val
88), but he considers only certain subsets of the class of concepts expressible as
Boolean polynomials. In contrast, we consider the most general type of concept
possible — the set of all concepts that are expressible as computer programs.

His main interest is whether a particular concept is learnable in polynomial
time or not. This is certainly of theoretical interest, but knowing that a com-
putation is polynomial doesn’t tell much about its practical computability. We
use CJS (conceptual jump size) to get good estimates of the time our machine
needs to solve problems. It is easy to compute and gives a much better estimate
than simply knowing if the computation time is polynomial.

Perhaps of most importance: in solving any problem, our system is able to
use any information learned in solving previous problems, so the more problems
it solves, the more skilled it becomes. In contrast, Valiant obtains for each
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class of concepts, a special learning algorithm, independent of what classes of
problems were solved in the past. The inability of these algorithms to profit
from many kinds of previous experience in problem solving seriously limits their
value in studying machine or human learning.

The neural nets used for cognitive modeling (And 88, Rum 86) correspond
closely to our “concept nets.” The concepts themselves correspond to nodes in
the neural net, and the weighted connections in the neural net correspond to
conditional probabilities relating concepts. They are strengthened or weakened
with training, as are the corresponding connections in neural nets.

There are, however, important differences: one is that the updating algo-
rithms that modify the conditional probabilities in concept nets, are quite differ-
ent from those used in current neural net research. The conditional probability
linking two concepts can depend on what occurs anywhere else in the net any
time in the past. The learning algorithms for neural nets only allow interactions
that are very local in space and time.

Another difference is that in a concept net, once a concept is defined, it
becomes immediately accessible at no extra cost, to all of the rest of the net, to
be used in problem solving or for defining new concepts.

It is easy to realize this cost–free sharing of concepts in computers that
allow subroutines to be shared by different parts of a program. In a neural net,
however, if several parts of the net need to use the same operator at the same
time, there will be a serious slowdown of network operation. One way to deal
with this is to make duplicates of important operators in various parts of the
net. Current neural net models don’t have ways to implement this duplication.

A third difference is that neural nets have great difficulty learning concepts
that require more than a few layers of “hidden units”, in contrast to our system,
which has no particular difficulty in learning concepts of great logical depth.

Nevertheless, network technology has great potential for fast, relatively in-
expensive computation, and we try to keep aware of developments in this field
that might enable us to adapt neural nets for more efficient hardware realization
of our learning model.

8 Present State of Development of the System?
Near Term Goals, More Distant Goals
Time Scales for These Goals

We have a general theoretical framework for machine learning based on algo-
rithmic probability and computational complexity theory. It overcomes many
limitations of current systems for machine learning and gives what appears to
be an extremely effective model for practical induction in a suitable training
environment. In its present form we have been able to use it to criticize other
systems for machine intelligence (such as those employing neural nets, and the
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systems of Winston (Win 75) and Lenat (Len 82)) and often suggest ways to
deal with these criticisms.

Three things are needed to implement this system as a computer program:
First, the programming of Levin’s search procedure for solving problems. We

have written preliminary programs for inversion problems and for optimization
problems (Sol 84). There appear to be no serious difficulties in this part of the
system.

Second, the programming of the updating procedure that defines new con-
cepts and modifies the parameters of old ones. Although this program has been
written (Sol 64b, pp. 233–240), we have not yet tested it in our present system.

Third, the writing and testing of training sequences for the system. This is
the main course of work in this research. These training sequences are of three
types:

The first type of training sequence is for problems of small Conceptual Jump
Size (CJS) — problems that are easy for the machine to solve, and simple enough
for the trainer to reliably anticipate the machine’s solutions of them.

We have written preliminary training sequences for learning algebraic nota-
tion (Sol 86). We will continue with sequences for learning to solve equations
and sets of simultaneous equations. Parallel with this we will be writing train-
ing sequences for theorem proving in formal logic, symbolic integration, pars-
ing sentences in formal languages and other problems that have been carefully
formalized and investigated by researchers in A.I. These problems are all “ad-
justable” in that we can make them as easy or as difficult as we want them to
be.

The second type are training sequences for problems of larger CJS. These
are more difficult problems in which the machine will often discover concepts
and solutions to problems unanticipated by the trainer. The problems will be
otherwise similar to those of the first type.

The third type are “bootstraps training sequences” that improve the ma-
chine’s general problem solving ability and/or make it easier for us to train the
machine. One important sequence of this kind will train the machine to work
on an unordered batch of problems — deciding itself which are the easiest, and
solving them first. This makes it much easier to train the system.

Another will train the system to work on the problem of improving its updat-
ing algorithm. The kind of training needed involves more mathematics and work
on various kinds of optimization problems — ultimately problems of improving
computer programs.

Perhaps the most important kind of training sequence is one that teaches the
system to understand English text. By “understand” we mean able to correctly
answer questions (in English) about the text. This understanding need not be
at all complete, but should be good enough so that ordinary English texts can
be a useful source of training for the system.

This training sequence will involve formal languages of increasing complexity.
The first examples of English text will cover a field that the system will already
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be familiar with — so that it will only have to learn the relationship of the
syntax to facts it already knows.

There has been much work on language learning by machines as well as by
humans (Ber 85). The formalization of learning implied by algorithmic proba-
bility usually makes it possible to translate this work into a form that will be
useful for training our system.

Our method contrasts sharply with that of Lenat, who is painstakingly pro-
gramming “common sense” information into his system, bit by bit (Len 86).
Initially, Lenat had considered the possibility of having his machine learn En-
glish and have it discover the “common sense” concepts that were needed to
make the text hold together. At that time, however, understanding of learning
itself was too rudimentary for this to be a reasonable approach.

It is difficult to overestimate the importance of text comprehension. After
the machine has learned to understand text to a fair degree, we can give it a
very large amount to read with relatively little external guidance — just as an
adequately trained human student. We expect that as the machine reads more
and more, it will understand a larger and larger fraction of what it reads, partly
by inventing concepts to fill in the “common sense knowledge” not stated in the
text, just as a human student does.
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