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We will discuss theorems showing that for a broad
clagss of stochastic sources, Willis' model gives er-
ror rates close to minimum obtainable. Used as the
basis of a betting systemlit again gives close to
maximum yield. Cover's model, using Chaitin complex-
ity, converges to the same optima but we are uncer-

taln 1f the rate of convergence is as rapid.

Inductive inference can be defined to be the extrs-.

polation of a binary sequence containing all the
data to be used in the induction. Almost all, if not
all, activities considered to be induction can bve
put Into this form. The Algorithmic complexity of a
gsequence 1is related to the shortest programs for a
reference universal Turing machine producing that se-
quence as output.

Earliest application of algarithmic complexity was

1 and it was shown that this

for inductive inference
complexity was relatively insensitive to choice of
reference machine, Kolmogoroézand Chaitiﬂ3independ-
ently used somewhat diffefent definitions of algor-
ithmic complexity to define randomness of finite
strings. Willisu later developed the original induc-
tion system in more rigorous form and gave many the-
orems ‘that greatly clarified its operation. Gover5,
appareﬁtly independently of %illis, used Chaitin's
complexity for induction and employed a simple bet-
ting system to measure its efficiency.

A model equivaleﬁf to Willis' uses as reference a
universal Turing machine having the "sequential pro-
perty"- l.e. if input string a gives A as output,
then any input of the form a b must have output of
form A B. Willis assigns to string a, the probability

R.(a) = {30 N, (a) /N, (1)

Ne(a) is the number of input strings of lengthg
that result in output strings of the form a b, where
b may be any finite (including the null) string. Ng
ls the number of input strings of length { that give
outputs that are at least as loné as a is.

Cover's model 1s based on Chaitin's complexity

using a universal prefix machine as reference, asg-

slgning to a the probability
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P = A% 2% (2)

C,; is the Chaitin complexity of the ith possible
continuation of a, and A is a constant that assures
that the total probability of all strings of a given
length is unity.

While both of these definitions of probability are
not effectively computable, there exist sequences
of computable'probability éstimates that converge to
equations (1) and (2).

Suppose we have a binary sequencé that has been
created by a stochastic generator., Through Bayes'
theorem each of the two systems can be used to give
the conditional probability of each bit in the seq-
uence, given the antecedent subsequence.

First, we will use each system as the basis of a
betting schemé at even odds. suppose we start with
a fortune of unity and bet a fraction p; that the
next bit will be 1 and a fraction p: = l-p} that
the next bit will be 0. At the end of n bets, our
total fortune will be exaétly 2" P, (x(n)). Here

x{n) is the binary sequence that has occurred, and

P, (x(n)) is the probability that our system has

aggsigned to that sequence,

Wiéfﬁégﬁﬁur fortune has a maximum expected value if

P, (x(n)) is the probability that would be assigned
by the stochastic generator. If P, is a less perfect
probability value the fortune will be somewhat less
- depending on how good P, is. One goodness criterion
of a system which we'll call b;, is the log of the
ratio of its betting yield to the maximum possible.
b, = log, (P; (x(n))/P(x(n)) (3)

Another criterion considers the differences in con-
ditional probability obtained by P and by P;. Let Si
be the conditional probability by P, of the nth bit
of x(n), given the previous n-1 bits, i.e.

8. = P, (x(n))/P; (x(n-1))
Then the expected value of # ( 5: - GSJ )1 is a
ol

measure of the error in E;._It can be shown that
E(é(gf-éj)*)ah}’:: (P(“x(n))g(“sj"-"éj)‘) Zbiiniz
E is the expected value with respect to P. *x(n) is
the kth sequence of length n (thére are just 2n of
them) . k&; and kgj are the conditional probabilities
of the jth bits of * x(n) for P; and P, respective-

ly. by 1is the same as in equation (3).
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If the underlying stochastic generator is describ-
able in a finite number of bits, d, then for P, = P,
(Willis' system), b, = d.

If the generator is finitely describable, except
for k differentiable parameters, (a differentiahle'
parameter has an infinitely long description), then
if the functional form is known and the parameters
are known to within a certain error, by will be of
the form ¢ log n, ¢ being a constant, For such a
generator, Willis' system will give d = ¢ log n + d.
¢ is the same constant as before, and d is the num-
ber of bits in the description of the functional
form of the stochastic generator.

If the generator 1s ergodic, then Cover has shown

that for his system,

1im D¢ _
7" «» DO n = 0

In Willis* system bw

" also approaches zero but at a

known rate, probably as fast as is theoretically

possible,

We don't yet have bounds on how rapidly b;_'

approaches zero - conceivably, it could do so very

slowly. Preliminary analysis, however, suggests

that the approach might be as rapid as that of
Willis' method.

The gystems described seem quite adequate for pre-
diction and cast much light on some classic pro-
blems in inductive inference theory.

One possible approach to defining randomness of a
finlte sequence is that all future continuations of
the sequence are about equally likely. The forgoing
sygtems make it poséihle to put such a definition
into an exact form and analyse its properties.

The problem of geometric probability is best un-
derstood by converting the data to digital form
(using most any analog to digital conversion method)
and analysing the data as a binary sequence. Var-
ious measure transformations have a simple interpre-
tation in this 1light, and their significance (or
lack of significance) in modifying probability
valﬁes can be readily evaluated.

Goodman's paradoxes involving various 1inguistic
tranaformation of inferential data, are also easy to

analyse from this point of view,

The most important open problems in induction

theory are in the practical realization of systems

suah as have been described. We want'to obtalin the

most accuracy in induction for a given amount of

computing.

This involves optimizing a function of

algorithmic and computational complexities - a kind

of problem that occurs in information retrieval and

in

- Inference."

some models of organic evolution.
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