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1 Introduction

This paper will describe a voyage of discovery — the discovery of Algorithmic
Probability. But before I describe that voyage —a few words about motivation.

Motivation in science is roughly of two kinds: In one, the motivation is
discovery itself — the joy of “going where no one has gone before” — the
excitement of creating new universes and exploring them.

Another kind of motivation is the achievement of a previously defined larger
goal, and there may be many subsidiary discoveries on the path to this goal.

In my own case both kinds of motivation were very strong. I first experienced
the pure joy of mathematical discovery when I was very young — learning
algebra. I didn’t really see why one of the axioms was “obvious”, so I tried
reversing it and exploring the resultant system. For a few hours I was in this
wonderful never-never land that I myself had created! The joy of exploring it
only lasted until it became clear that my new axiom wouldn’t work, but the
motivation of the joy of discovery continued for the rest of my life.

The motivation for the discovery of Algorithmic Probability was somewhat
different. It was the result of “goal motivated discovery” — like the discovery of
the double helix in biology, but with fewer people involved and relatively little
political skullduggery.

The goal I set grew out of my early interest in science and mathematics.
I found that while the discoveries of the past were interesting to me, I was
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even more interested in how people discovered things. Was there a general
technique to solve all mathematical problems? Was there a general method
by which scientists could discover all scientific truths? The problems seemed
closely related to induction and so around 1942 I first defined a general induction
problem. It had two aspects:

The first I called MTM (Mathematical Thinking Machine). The problem is
to do induction when the model generating the data is known to be deterministic
(non-probabilistic).

The second I called NMTM (Non-MTM). The problem is to do induction
when the model may be probabilistic.

At the time, I felt that the second problem was more difficult; that it was
what scientists did when they invented theories to account for data. For both
problems, I wanted real, practically realizable solutions, though as “study prob-
lems” I considered cases in which computation might be impractical 1.

I was well aware that the problems were very difficult, and I expected to
spend the rest of my life working on them.

As is normal under such circumstances, the definitions of the problems
changed as I moved toward solutions.

When embarking on a very difficult task, it is well to prepare for it by
collecting tools that are likely to be useful. In this case the tools were kinds of
knowledge. Some tools that seemed relevant:

1. A good knowledge of science and how scientists make discoveries.
2. A good understanding of mathematics and how to apply it to all kinds of

problems.
3. Understanding of probability and statistics.
4. A general knowledge of human activities — how people solve problems,

how they think they solve problems, how they make predictions.
Of the four items, knowledge of science and math has been most useful.

Studying probability revealed important deficiencies in our understanding of it.
I found surprisingly little in conventional statistics to be relevant to my goals.

Understanding humans is certainly important when living in a community
of them, but applying this understanding to my goals has become relevant only
after I had discovered Algorithmic Probability. At this point the politics and
rhetoric of science become dominant factors influencing the reception and per-
ception of my discovery by the scientific community.

My university education began in 1946: I chose the University of Chicago
because it had very good mathematics and physics departments. It was also
very good in the humanities — a part of my education that I had hitherto
neglected. I decided to major in physics because it was the most general of the
sciences, and through it, I could learn to apply mathematics to problems of all
kinds.

1Years later I found the solutions to the two problems to be identical.
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In addition to physics and math, I studied the logical basis of probability
with Carnap, and mathematical biology with Rapoport and Rashevsky. I left
the University in 1951 with an MS in physics, and I began half time work
in industry as a mathematician-physicist. The rest of my time was spent on
induction research.

The next section gives some important influences on my thought up to the
time I left the University.

2 Through The University

2.1 Bridgman

My earliest contact with modern scientific philosophy may have been P.W.
Bridgman’s concept of “operational definition”(Bri 27). An operational defi-
nition of anything is a precise sequence of physical operations that enable one
to either construct it or identify it with certainty. When one can’t make an
operational definition of something, this is usually an indication of poor under-
standing of it. Attempts to operationalize definitions can be guides to discovery.
I’ve found this idea to be an invaluable tool in telling me whether or not I really
understand something.

Though individual concepts in a theory need not be operational, the theory
as a whole must have operational meaning. Rapoport (Rap 53) discusses the
application of operational concepts in daily life as well in science.

2.2 Korzybski

Alfred Korzybski has been variously described as charlatan, dilettante and ge-
nius. He summarized what he felt were the most important general principles
in the history and philosophy of science, and tried to apply those principles
to everyday life as well as to scientific investigation. I found his major work,
“Science and Sanity” (Kor 58) unreadable, but I got several important heuristic
principles from authors that interpreted and/or popularized his work (Rap 53,
Joh 46, Hay 41).

A few principles:
(a) The map is not the same as the territory it purportedly describes. My

interpretation of this idea has expanded over the years. Korzybski’s emphasis
was on features of the territory that the map did not have. Here, we mean “ter-
ritories” and “maps” in a very general sense — anything in the real world and
something that is supposed to describe the thing in the real world. Since then
I have learned to appreciate the importance of the rich heuristic associations
of maps — features that the territories don’t necessarily have, but neverthe-
less make it much easier for us to understand ( and often misunderstand! )the
territories.
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(b) Two valued logic is usually inappropriate for dealing with events in
the real world. Part of this takes the form of a gray scale for both data and
predictions. Zadeh’s “Fuzzy Sets” (Zad 65) may be regarded as one way to
develop this idea. Probability theory is another.

(c) When working on a difficult problem, usually people break it down into
subproblems, and try to work the sub-problems –but often the set of sub-
problems is not solvable and/or is not really equivalent to the main problem.
Either try to break the problem down in a different way or solve the main
problem directly. This last would be the “holistic approach”.

(d) Often people do not realize that the ill-defined or apparently unsolvable
problem they are working on is really a sub-problem and that (c) is relevant.

2.3 Freud/Poincaré

From Freud I got the idea of the unconscious mind: that there were things going
on in one’s brain that one didn’t have direct access to. Poincaré, made it clear
that much of his serious problem solving occurred in his subconscious, and I felt
this was very common in problem solving of all kinds in the sciences and the
arts.

This view was one important reason for my later rejection of “Expert Sys-
tems” as a significant step toward Artificial Intelligence. Expert Systems were
(at best) expressions of peoples’ conscious thought, which was, I felt, a very
small fraction of human problem solving activity.

Other implications: Memory is what you invent to explain the things that
you find in your head. Over the years, the “facts” in this paper will be gradually
revised as I reread my research notes.

Explanations that people give for their own behavior are not to be taken too
seriously—including discussions in this paper.

2.4 Bayes, Probability, and Human Learning

Probability theory would seem to offer an immediate solution to the NMTM
problem. This turned out to be false. Probability theory tells how to derive
new probability distributions from old probability distributions. It tells us how
to make decisions from known or derived probability distributions and known
utility functions. It does not tell how to get a probability distribution from data
in the real world — which is what I wanted.

There is a definition of probability in terms of frequency that is sometimes
usable. It tells us that a good estimate of the probability of an event is the
frequency with which it has occurred in the past. This simple definition is fine
in many situations, but breaks down when we need it most, i.e.: its precision
decreases markedly as the number of events in the past (The “sample size”)
decreases. For sample sizes of 1 or 2 or none, the method is essentially useless.
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Another common difficulty: It gives no suggestion as to how to deal with
the “data fusion” problem : Suppose left-handed men have a probability (in the
frequency sense) of .01 of dying at age 60. Black-haired men have a probability
of .001 of dying at age 60. What is the probability of a left handed black haired
man dying at age 60?

If, as is often the case in such situations, we have not collected data on
black-haired, left-handed men — or if we only have two or three cases, then the
frequency concept of probability tells us little or nothing.

Bayes’ Theorem seemed like a very attractive approach to the general prob-
lem. If you had an a priori distribution over all possible universes, Bayes’ The-
orem would give an exact probability distribution for the continuation of any
possible sequence of data. The difficulty was in obtaining the a priori probability
distribution.

There had been some discussion of “personal probability” — in which each
person developed an a priori probability distribution that was an appropriate
summary of his life experience. This explained why different people made dif-
ferent predictions based on, apparently, the same data. Still, the origin of this
personal a priori distribution was unclear — not good enough to use for real
prediction.

My general conclusion was that Bayes’ theorem was likely to be the key.
That a person was born with a reasonably good built-in a priori probability
distribution. The person would then make predictions and decisions based on
this distribution. The distribution was then modified by their life experience.
The initial “Built-in” distribution was obtained by organic evolution. There
was a strong selection in favor of organisms that made decisions on the basis of
“good” a priori probability distributions. The organisms making poor decisions
would tend to have fewer descendants.

This is a Chomsky-like way of explaining where our personal probabilities
come from. Still, it doesn’t tell what that distribution is, and it doesn’t tell
enough about it to be useful in making probability estimates.

The biological origin of the a priori distribution suggests that one might
learn much about it by studying living creatures –that this might be a very
good organizing principal for the science of psychology.

The correspondences between probability evaluation and human learning are
very close:

(1) Both involve prediction of the future based on data of the past.
(2) In both of them, prediction alone is of little value. The prediction must

have an associated quantitative precision before it can be used to make decisions
– as in statistical decision theory.

(3) In both cases the precision of prediction is critically dependent upon the
quality and quantity of data in the past.

(4) In both cases, the precision of the prediction is critically dependent on the
quality and quantity of the computational resources available. Human decisions
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improve considerably if people have much time to organize data and try various
theories in attempts to understand it.

That probability has to be defined in terms of the computational resources
necessary to calculate it, is a relatively recent development 2.

2.5 Shannon

Shannon’s papers (Sha 48) and subsequent developments in information theory
have had a profound effect on my ideas about induction. Most important was
the idea that information was something that could be quantified, and that the
quantity of information was closely related to its probability. It suggested to me
what I called at that time “The Information Packing Problem”— How much
data could one pack into a fixed number of bits, or conversely how could one
store a certain body of data using the least number of bits?

The idea was that the amount of data one could pack into a certain num-
ber of bits was related to the redundancy or information content of the data.
Since information content was related to probability, inverting a solution to the
information packing problem could give one probabilities.

Unfortunately, it was always possible to pack an arbitrary data string into
1 bit, using a suitable definition — a clearly inappropriate solution. I wasn’t
familiar enough with Universal Turing Machines to escape from that dilemma.
Nevertheless — when I finally did discover Algorithmic Probability — the fact
that it solved the “information packing problem” was one of the clues that lead
me to believe it was correct.

2.6 Carnap

Carnap was one of the last of the philosophers of science called “Logical Posi-
tivists”. He felt that most of the problems of philosophy could be solved through
the analysis of language.

Although he was a professor in the philosophy department at the University
of Chicago, most of his students were physicists or mathematicians. When I
first met him, he was working on a general theory of probability — much as I
was.

Some important ideas that I got from him:
That there were several definitions of the word “probability” — the best

known was the frequency concept of probability, which he called P1. However,
there was another kind of probability: it was the degree of confidence one had
in a hypothesis with respect to a certain body of data. He called this P2(H, D).

Carnap’s model of probability started with a long sequence of symbols that
was a description of the entire universe. Through his own formal linguistic
analysis, he was able to assign

2See section 5.2, on Practical Induction, for further discussion of this point
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a priori probabilities to any possible string of symbols that might represent
the universe. He derived his P2(H, D) from this a priori distribution using
Bayes’ Theorem.

I liked his function that went directly from data to probability distribution
without explicitly considering various theories or “ explanations” of the data.
It was a Korzybski-like way of avoiding the difficulties inherent in the verifica-
tion of probabilistic theories. I also liked his idea of P2(H, D) and the idea of
representing the universe by a digital string, but his method of computing the
a priori probability distribution seemed unreasonable to me. The distribution
depended very much on just what language was used to describe the universe.
Furthermore, as one made the describing language larger and more complete,
predictions were less and less contingent on the data. Carnap admitted these
difficulties, but he felt that his theory nonetheless had redeeming qualities and
that we would eventually find a way out of these difficulties.

Algorithmic Probability is close to Carnap’s model, and it does overcome
the difficulties described.

3 The Discovery of Algorithmic Probability

3.1 Huffman

Huffman coding (Huf 52) was an approximate solution to a special case of the
“information packing problem”. It was usually used if one had a finite number
of symbol types of known frequencies. It was a good code if the data being
coded was well approximated by a Bernoulli sequence, but was inappropriate if
the data had more complex structure.

Nevertheless, when I did discover Algorithmic Probability, I realized that it
was the inverse of Huffman’s problem. He obtained a short code from knowledge
of probabilities. I obtained probabilities from knowledge of short codes.

In the years before I had actually proved the correctness of Algorithmic
Probability, it’s relation to Huffman’s work was strong evidence that I was on
the right track.

3.2 Minsky and McCarthy

I first met Marvin Minsky and John McCarthy around 1952, soon after leaving
the University. At that time, Minsky was mainly interested in human learning
and problem solving. He wanted to design machines to simulate this aspect
of human behavior and was beginning to get McCarthy interested. My own
goals were more grandiose. I was interested in prediction and problem solving
in general and persuaded Minsky that our machines would eventually go well
beyond human capabilities.
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Through our similarity of interest, Minsky and I soon became close friends.
Although I lived in New York, I would often visit Boston, where Minsky lived.
Though we were working on essentially the same problems, our backgrounds
were different and we had much to teach each other.

From both Minsky and McCarthy, I learned to understand and appreciate
Turing machines - both universal and non- universal. Up until that time, I had
only a poor understanding of formal logic and the limits imposed by Gödel’s
Theorems. The translation of formal logic and recursive function theory into
theorems about Turing machines was a real revelation for me. It gave me a
quick intuitive grasp of many ideas that I had before found incomprehensible.
It is not unusual for the translation of a problem into a new language to have
this wonderful effect.

In 1956, McCarthy and Shannon organized the “Summer Study Group in
Artificial Intelligence” at Dartmouth — a gathering of most of the world’s re-
searchers in A.I. and related fields. At that time, most of us had had a fair
amount of experience with neural nets. Some notable exceptions: McCarthy,
Newell and Simon. Shannon had done pioneering work on Boolean networks
–which were close to neural nets.

One day McCarthy gave a talk on “Well defined mathematical problems”.
His thesis was that all mathematical problems could be formulated as problems
of inverting Turing machines.

Specifically, given a machine M whose inputs were strings of symbols. Given
a desired output string, s, we are required to find a string p such that M(p) = s.

McCarthy gave many examples to show how problems could be put into this
form.

I asked him about the induction problem: “Suppose you are given a long se-
quence of symbols describing events in the real world. How can you extrapolate
that sequence”?

Next day he said, “Suppose we were wandering about in an old house, and
we suddenly opened a door to a room and in that room was a computer that
was printing out your sequence. Eventually it came to the end of the sequence
and was about to print the next symbol. Wouldn’t you bet that it would be
correct?”

There were several difficulties in implementing this idea as a prediction
scheme:

First: What machine should be used?
Second: There may be a large number of inputs to the machine that give the

same initial output but extrapolate differently. Which should we use? Third:
Suppose the machine emits no symbols after the sequence to be extrapolated?

Though these difficulties all seemed quite serious, I remembered the idea
because it seemed intuitively reasonable.
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3.3 An Inductive Inference Machine

After the Dartmouth conference, I incorporated much of my thinking on pre-
diction into the report and paper “An Inductive Inference Machine”(Sol 56, Sol
57).

How the system operates: It is initially shown a training set of a number of
two dimensional patterns that represent correctly worked arithmetic problems,
e.g.:

= 0 1 1 = 1 0 1
0 1 1 , 1 0 1

Then it is given a problem set of 2 dimensional patterns in which one or
more of the positions has a question mark in it, e.g.:

= 1 0 0 = 0 0 ?
1 ? 0 , 0 0 1

The problem is to find what symbol the question mark represents.
To solve the problem, the system has a small number of primitive abstrac-

tions and transformations for combining and modifying abstractions. These
primitive and transformed abstractions are used to create small two dimensional
patterns that can be used for prediction.

Initially, it tries all of the primitive abstractions on the training set to see if
any lead to correct predictions. If any do, and they are applicable to problems
in the problem set, they are used for prediction.

If no suitable predictive abstractions are found in the primitive set, then
members of the primitive set are transformed and combined by the set of trans-
formations to produce new abstractions. These are tested on the training set
and the successful ones are used for prediction on the problem set.

We continue generating more and more abstractions until we find at least
one that works on the training set and is

applicable to the problem set.
After each round of training, various of the abstractions are given utility

scores, depending on how successful they were in the prediction process.
In the next round of examples and problems, abstractions with high utilities

are used preferentially in creating new trial abstractions.
We continue with a sequence of problems of increasing difficulty.
Four important aspects of the system:
(1) The nature of the problem sequence.
(2) The set of primitive abstractions and transformations.
(3) How the utility function is evaluated and how it governs the generation

of new abstractions.
(4) The technique used for searching for new abstractions that are both

consistent with the training examples and applicable to the problem examples.
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I spent much time looking for an effective utility function without finding a
really good solution.

Many years later, Algorithmic Probability proved to be the ideal tool for the
design of utility functions (Sol 86, Sol 89) and Levin’s search algorithm (Lev
73a, Sol 84) turned out to be the best way to search for good new abstractions.

3.4 The Discovery of Algorithmic Probability

On reading Chomsky’s “Three Models for the Description of Language” (Cho
56), I found his rules for generating sentences to be very similar to the techniques
I had been using in the 1957 paper to create new abstractions from old, but his
grammars were organized better, easier to understand, and easier to generalize.
It was immediately clear that his formal languages were ideal for induction.
Furthermore, they would give a kind of induction that was considerably different
from techniques used in statistics up to that time. The kinds of regularities it
could recognize would be entirely new.

At the time of Chomsky’s paper, I was trying to find a satisfactory utility
evaluation function for my own system. I continued working on this with no
great success until 1958, when I decided to look at Chomsky’s paper more
closely. It was easy for me to understand and build upon. In a short time, I
devised a fast left to right parser for context free languages and an extremely
fast matrix parser for context sensitive languages. It took advantage of special
32 bit parallel processing instructions that most computers have.

My main interest, however, was learning. I was trying to find an algo-
rithm for the discovery of the “best” grammar for a given set of acceptable
sentences. One of the things sought for: Given a set of positive cases of ac-
ceptable sentences and several grammars, any of which is able to generate all
of the sentences — what goodness of fit criterion should be used? It is clear
that the “Ad-hoc grammar”, that lists all of the sentences in the corpus, fits
perfectly. The “promiscuous grammar” that accepts any conceivable sentence,
also fits perfectly. The first grammar has a long description, the second has a
short description. It seemed that some grammar half way between these, was
“correct” — but what criterion should be used?

There are other modes of learning in which the “goodness of fit” criterion is
clearer.

One such learning environment involves a “teacher”, who is able to tell the
“learner” if a proposed sentence is within the language or not. Another training
environment gives negative as well as positive examples of sentences.

Neither of these training environments are easy to obtain in the real world.
The “positive cases only, with a few errors” environment is, by far, most widely
available.

The real breakthrough came with my invention of probabilistic languages and
their associated grammars. In a deterministic (non-probabilistic) language, a
string is either an acceptable sentence or it is not an acceptable sentence. Taking
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a clue from Korzybski — we note that in the real world, we usually don’t know
for sure whether anything is true or false —but we can assign probabilities. Thus
a probabilistic language assigns a probability value to every possible string. In
a “normalized” language, the total probability of all strings is one.

It is easy to give examples of probabilistic grammars: any context free or
context sensitive generative grammar can be written as a set of rewrite rules
with two or more choices for each rewrite. If we assign probabilities to each of
the choices, we have a probabilistic grammar.

The way probabilistic grammars define a solution to the “positive examples
only” induction problem:

Each possible non-probabilistic grammar is assigned an a priori probability,
by using a simple probabilistic grammar to generate non-probabilistic grammars.

Each non-probabilistic grammar that could have created the data set can
be changed to a probabilistic grammar by giving it probabilities for each of its
choices. For the particular data set of interest, we adjust these probabilities so
the probability that the grammar will create that data set is maximum.

Given the data di ,the probability that a particular grammar Gj , created di

is the a priori probability of Gj multiplied by the probability that di would be
generated if we knew Gj to be the generating grammar (Bayes’ Theorem). We
then chose the grammar for which this product is largest.

The promiscuous grammar has high a priori probability, but assigns low
probability to the data. The ad-hoc grammar has very low a priori probability,
but assigns probability 1 to the data. These are two extreme grammar types:
the best choice is usually somewhere between them.

For more detailed discussion see Hor 71, Sol 59 and Sol 64b, pp. 240-251.
Upon inventing a new kind of object, one wants to investigate its properties.

One way to do this is to generalize the object. However, before generalizing
probabilistic grammars, let us first generalize the more familiar deterministic
grammars.

What is the most general deterministic grammar? A grammar can take the
form of an acceptance rule or the form of a generation rule.

The most general deterministic acceptance rule: Suppose M() is a universal
Turing machine. If we feed it the finite string x, its output (when and if it
ever stops) will be denoted by M(x). Let a be a finite string that describes
an acceptance grammar. Let s be a finite string that is a candidate sentence.
Then s is an acceptable sentence in the language described by a if and only if
M(as) prints 1 and stops3. It is clear that there are languages and candidate
strings such that the question of acceptance is undecidable. The generalization
to probabilistic languages is immediate. If b is the description of the probabilistic
language and s is a candidate string, then M(bs) prints out a binary string that
represents the probability that s is in the language described by b.

A useful restriction on M is that its output tape be unidirectional — once it
3Here as indicates the concatenation of strings a and s
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has printed an output symbol it cannot erase it. In this case, even if the machine
does not stop, we can sometimes obtain an approximation to the probability.

The most general deterministic generative grammar works similarly to the
deterministic acceptance grammar. If q is the description of a generative gram-
mar, and n is any positive integer, and M(qn) prints out the string s and stops,
then s is the nth sentence of the language.

The generalization to probabilistic generative grammars is also immediate.
If h is the description of the probabilistic language and r is an infinite random
string, then the probability that M(hr) will print out a string s and stop is the
probability with which s occurs in the language.

Since r is an infinite string, we will need to modify M to accommodate it. We
do this by giving M three tapes: A unidirectional output tape, a unidirectional
input tape, and an infinite bi-directional work tape. On the input tape, M first
reads h, then it reads as many bits of r as it needs to generate the output string.
The unidirectional output tape enables us to have at least partial knowledge of
the output if the machine never stops.

How is the probabilistic language described by M(hr) related to the deter-
ministic language described by M(qn)?

In M(qn), the integer n is used to determine what choices are to be made
in string generation by the grammar described by q.

In M(hr), the random number, r, is used to make the probabilistic choices
in string generation by the grammar described by h.

The expression M(hr) is extremely interesting. The argument hr consists
of a random part preceded by a non-random description of a language. What
would happen if the argument of M was purely random: M(r)? If L is the
length of string h, in bits, then r has the probability of just 2−L of starting with
the string h and generating the language defined by h. The result is that the
probability distribution implied by M(r) is the same as the weighted average of
all of the distributions, M(hir).

Here hi is the ith of the set of all descriptions of all grammars.
The weight associated with hi is 2−Li , where Li is the length of the descrip-

tion, hi, in bits.
It is not unreasonable to assign 2−Li as the a priori probability of the gram-

mar hi. This would be the value given if we had a very simple probabilistic
grammar generating the set of grammars, [hi].

If we do this, our weighted average amounts to the a priori probability dis-
tribution implied by all grammars.

This means that if we consider all possible descriptions of all possible gram-
mars, then M(r) is an a priori probability distribution on all finite strings— a
truly amazing result, since there is no mention of grammars in the expression
footnote More carefully defined versions of this apriori distribution were inves-
tigated by Levin (Lev 73b, 74), Gács (Gác 74), and Chaitin (Cha 75). Li and
Vitányi call it the Universal Discrete Distribution (Li 93,section 4.3.4).!
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Suppose we define the shortest description of s as the shortest string, ds,
such that M(ds) = s. Then the probability assigned to s is approximately 2−Ls

since this is the probability that the first Ls bits of r will be ds. Here Ls is the
length of ds in bits.

I then used the 2−Ls idea to devise a priori probability distributions for
sequential extrapolation (Sol 60a). Using the distribution, 2−Ls as a first ap-
proximation, I obtained 2 different models for sequential prediction 4:

The first was based on probabilities of finite strings.
The second model (which I will refer to as Algorithmic Probability) defined

the a priori probability as the probability distribution on the output strings
induced by a universal Turing machine with random input. It was similar to
the M(r) distribution for finite strings, but it allowed infinite output strings.

In the next two years, I refined the second model (which is very probably
our best model for sequential prediction) and I added three more models. These
5 models were published in 1964 (Sol 64a,64b).

At the time, I felt it likely that all of the models would give about the same
probability distributions.

I recently reviewed the 1964 paper with the benefit of 30 years of hindsight.
Two of the five models described are certainly correct. While one of the models
is, strictly speaking, meaningless, it has been of great practical and heuristic
value. It is the closest approximation to Algorithmic Probability I know of that
has actually been implemented in a prediction scheme (Ris 89).

For a more detailed discussion of the 1964 paper see the Appendix.

4 After the Discovery

At first, most of my evidence for the validity of Algorithmic Probability was
very informal:

It corresponded to (and defined more exactly) the idea of Occam’s razor —
that “simple” hypotheses are more likely to be correct.

It was similar to Carnap’s model of induction, but it seemed to overcome its
deficiencies.

Both Huffman coding and the “Information Packing Problem” used proba-
bilities to compress information. Algorithmic Probability inverted this process
and obtained probabilities from compression.

That Algorithmic Probability was relatively independent of the choice of
which universal machine was used seemed likely but was not altogether cer-

4These two models were first described in a talk given at the Conference on “Cerebral
Systems and Computers” at the California Institute of Technology Feb 8–11,1960 — then in
a Zator Co. report (Sol 60a),and again in a more widely circulated AFOSR report (Sol 60b).

Minsky briefly described these ideas in 1961 (Min 61),then in more detail in 1962, including
a discussion of “the invariance theorem”(Min 62). The 1961 paper was then reprinted in
“Computers and Thought”(Fei 63),a very widely read book that first introduced the world to
Artificial Intelligence.
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tain. It was clear that probabilities assigned by different machines would differ
by only a constant factor (independent of length of data described), but this
constant factor could be quite large. Changing reference machines corresponds
to changing from one computer language to another. Although BASIC and
FORTRAN are almost identical, translating from one to the other requires a
program of certainly more than 1000 bytes. This corresponds to a “constant
factor” of greater than 10300 — a truly enormous number.

Fortunately, in just about all applications of probability, we are not in-
terested in absolute probabilities, but only in probability ratios. I had some
heuristic arguments to the effect that the probability ratio for alternative possi-
ble continuations of a sequence should be relatively machine independent if the
sequence were very long.

The second half of the 1964 paper was devoted to examples of how this prob-
ability evaluation method could be applied. That it seemed to give reasonable
answers was some of the strongest evidence that I had for its correctness.

There was one property that I felt the general induction system should pos-
sess: for long sequences the general system should give at least as good results
as any other induction system. There was a heuristic argument to show this
would be so.

In 1968 I devised a simpler minimal criterion for correctness of an induction
system: Suppose we have an infinite string of symbols that was generated by a
probabilistic generator that had a finite description. Then for a sufficiently long
sequence of data, the method should give predictions with probability values
very close to those given by the generator.

Later that year an event occurred that enabled me to prove that Algorithmic
Probability satisfied this criterion.

4.1 Willis

In 1968 I was asked to review “Computational Complexity and Probability
Constructions”, a paper by David Willis. It was the first substantive response I’d
seen to my 1964 paper giving the four models. I found his paper to be excellent.
Willis avoided the “halting problem” by defining computationally limited Turing
machines that had no halting problems. From these machines, he was able to
define probabilities in an exact manner. By raising the computational limits on
his machines, he approached the behavior of universal machines.

In addition to its value as a rigorous treatment of a subject that I had
treated relatively informally, I was able to use Willis’ results to prove that these
induction methods satisfied my “correctness” criterion. The methods converged
surprisingly rapidly to the correct probability values.

Unfortunately it took me about 6 months to read Willis’ paper with sufficient
care. By that time, the other two reviewers and the journal editor had rejected
it. One of the reviewers felt that it didn’t add much to what I had said in my
1964 paper.
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I wrote Willis, telling him what a great paper it was and urged him to send
it to a different journal. It was finally published in JACM in 1970 (Wil 70).

It was not until 1975 that I first published the theorem on the convergence
of Algorithmic Probability to the correct values (Sol 75a, Sol 75b) and not until
1978 that the proof itself was published (Sol 78).

Meanwhile, Cover (Cov 74; Sol 78, p.425) had shown that if one used “Exten-
sion Probability” as the basis of a gambling scheme, the yield would be about
the maximum obtainable. The proof was applicable to all complexity based
probability measures.

These two demonstrations suggested very strongly that complexity based
induction would be a very good basis for practical prediction.

4.2 Levin

The first paper I read by Levin was one he had written with Zvonkin in 1970
(Zvo 70) reviewing work in the Soviet Union on Algorithmic Probability and
complexity that had been inspired by Kolmogorov, Levin’s thesis advisor. Since
then I had gotten the impression that Levin was in some sort of political diffi-
culties and I wondered whether I could engineer some world academic pressure
to get him out of prison (if it gotten to that point!).

In 1978 I was much relieved to receive a phone call from Levin: he was safe
and sound at MIT with lots of amazing stories to tell about his adventures. He
had, indeed, indulged in “political incorrectness”, and it was only through the
influence of Kolmogorov that he was able to get out of the country unscathed!

Soon after I met him, he told me that he had a near optimum solution to
the general inversion problem (Lev 73a).

Inversion problems are the P and NP problems of computational complexity
theory: i.e. Given a machine, M , that maps finite strings onto finite strings.
Given the finite string, x. How can we find in minimal time, a string, p, such
that M(p) = x?

Suppose there exists an algorithm, A, that can examine M and x, then print
out p within time T . Levin had a search procedure that, without knowing A,
could do the same thing that A did, but in no more time than CT2L. Here, L is
the length of the shortest description of A, using a suitable reference machine,
and C is a measure of how much slower the reference machine is than a machine
that implements A directly. An alternative form of this cost of the search is
CT/P . Here P = 2−L is approximately the a priori probability of the algorithm,
A.

The parameter T/P plays a critical role in searches of all kinds. In designing
sequences of problems to train an induction machine the T/P value of a partic-
ular problem at a particular point in the training of the machine gives an upper
bound on how long it will take the machine to solve the problem. In analogy
with human problem solving, I christened T/P “Conceptual Jump Size”.
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Before I met Levin, I had been using T/P as a rough estimate of the cost of
a search, but I had no proof that it was achievable.

Sometime later, I showed that Levin’s search procedure (which I will hence-
forth denote by “Lsearch”) is very close to optimum if the search is a “Blind
Search” 5. A blind search is one in which the searcher has only the probabilities
of each of the things to try, and is unable to learn anything (i.e. modify the
probabilities) from any trial.

In Artificial Intelligence research,“Blind search” is usually impractical, since
the size of the search space increases exponentially with the problem size. This
is called “The exponential explosion”.

Heuristic search deals with this explosion by sharply reducing the size of
the search space. This process of cutting out parts of the space is implemented
through domain-specific knowledge of the search space, or by more general meth-
ods that work in many domains.

The probabilistic analog of a heuristic is a function that assigns low proba-
bilities to areas of the search space that would be cut out by the heuristic. In
machine learning theory this is called “bias”.

While many problems in science and mathematics can be formulated as
inversion problems, there is another large set of problems that cannot. These
are the time (or resource) limited optimization problems.

Suppose we have a machine, M , whose inputs are finite strings, and whose
outputs are numbers. We are given a fixed time T . The problem is to find
within time T an input string, s, such that M(s) is as large as possible.

If no time limit is given, the problem can be generalized so that after a
certain minimum time, one should always have the latest best solution to the
problem available. If asked for a solution at a time T (previously unknown to the
problem solver), the solution presented should be not much different from the
one obtainable if the limit T were known in advance footnote Dean, Thomas
and Boddy ( Dea 88 ) have coined the term ”anytime algorithm” for a solution
to this type of optimization problem. Sigart Bulletin of the ACM Vol 7, No.2
April 1996, has references and recent work in this area..

An example of an optimization problem of the first kind: design an automo-
bile in 6 months having certain specifications and having minimum cost. Many
problems in science and engineering are of this type.

Sometime later, Levin and I independently generalized Lsearch to include
time limited optimization problems.

5Though Lsearch has been widely described (Lev 73; Sol 84,86,89; Li 93 pp. 410-413) there
has been little application of it to real problem solving. Paul and Solomonoff (Pau 94) discuss
its application to several problems and calculate T/P (Conceptual Jump Size) for solutions,
but Schmidhuber (Schm 94) was perhaps the first to actually run a computer program that
used Lsearch to solve problems. While it only solved simple problems in neural net design the
technique used is very general and of much interest. The probabilistic version of Lsearch used
in the program had a serious error in it, but it has been replaced with a more conventional
non-probabilistic Lsearch that seems to work fine.
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In Lsearch, I had what seemed to be a powerful approach to problem solving.
The most general kind of induction can be formulated as the problem of finding
short descriptions of data – - which is a time limited optimization problem, and
therefore amenable to Lsearch.

4.3 Incremental Learning

The next step was to embed these problem solving techniques into a system for
machine learning.

Since Lsearch wasn’t much good without the probabilistic equivalent of
heuristics, it would be necessary to have the machine modify the probability
distribution over the search space as a result of its own experience in problem
solving.

As originally envisioned, the new system was very similar to my old “Induc-
tive Inference Machine” of 1956. The machine starts out, like a human infant,
with a set of primitive concepts 6.

We then give it a simple problem, which it solves using these primitive
concepts. In solving the first problem, it acquires new concepts that help it
solve the more difficult second problem, and so on. A suitable training sequence
of problems of increasing difficulty brings the machine to a high level of problem
solving skill.

The system overcomes many limitations of other learning systems. Most of
them are limited in the types of concepts they can discover, even with infinite
search time. This can be because the system has an “incomplete” set of concepts
(not “universal” in the sense of “Universal Turing Machine”), and/or because
the search algorithm is inadequate. We give our machine a complete set of
concepts early in its training. The use of Lsearch then guarantees that any
describable concept will eventually be discovered by the system.

The scope of problems the system can handle are inversion problems and
time limited optimization problems. These cover a very large fraction of the
problems encountered in science and engineering.

There are two aspects of the efficiency of any system for machine learning
. First — What is the computational complexity of its solutions to problems?
How much time and memory are required? Second — What is the informational
efficiency? How much training is needed for the system to learn? How many
problems and/or examples are required?

In the particular training environment I had in mind, I felt that Lsearch
would be extremely efficient in both ways — I had heuristic arguments suggest-
ing that it was within a factor of 4 of being optimum.

6The term “concept” in machine learning theory has a special meaning – the generalization
of the set of positive training instances that we want the machine to learn. Here, it is being
used in a more colloquial manner – I mean it to be any kind of intellectual abstraction. In
the present context, any “concept” can be represented by string of computer instructions – a
“macro”. They are combined by concatenation.
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An additional attractive feature of the system: the improvement of the gen-
eral operational efficiency of the system can be formulated as a time limited opti-
mization problem — so after the system has had enough experience in problems
of improving programs, we have it spend half of its time on self-improvement.

To get some feedback on the effectiveness of these ideas I needed a suitable
training sequence of problems of increasing difficulty. Designing such a sequence
proved to be very difficult. I was eventually able to design three training se-
quences in varying degrees of completeness.

The first learned the rules of arithmetic after being shown examples of cor-
rectly worked problems. This was done in some detail and T/P values (Con-
ceptual Jump Size) were computed for each stage of the learning (Pau 94).

The second induced the laws of algebra after being given a sequence of simple
linear equations to solve.

The third learned to solve general linear equations, then general quadratics,
then general cubic equations.

Though the system seemed to work (on paper, at least) for these training
sequences, I felt that as a whole, they didn’t do what I wanted them to do.
I didn’t see how I could fit them together to solve more difficult problems —
and ultimately, to solve problems they were not designed to solve. Another
thing that disturbed me was that the system never used parts of the solutions
to previous problems to help solve new problems. It only used the completed
solutions of previous problems. This deficiency was not in the system itself, but
only in the inadequacy of the training sequences.

One promising approach generalizes the idea of training sequences. Most
training in the real world does not consist of problems alone. Wholly or partially
solved problems, statements of fact and hints of various kinds are only a few of
the components of common training environments. It would seem to be much
easier to implement learning with this larger universe of techniques. I have
examined some training environments of other systems for machine learning.

Genetic Algorithms have been a rich source of ideas on possible training
environments. These algorithms use either a complete set of concepts or can
be easily modified to do so. They work by combining concepts that have been
useful in the past to generate promising new trial solutions, much as my own
system does.

Consider a Genetic Algorithm System designed to find values of s that max-
imize the function M(s). As before, M is a machine with strings, s as in-
put and real numbers between zero and ten as output. We start out with
[si]0, i = 1, 2, ..., 100, a population of 100 random strings, the zeroth generation.
The mean value of M(si) over that population is, say, 2. We make the following
training sequence, for the sets, [si]j . The first problem is to get the average
value of M(si) to be 3. The second problem is to get an average of 4. The jth
problem is to get an average of j + 1 etc., up to j = 7 or j = 8. Each problem
builds on the information obtained in the solution to the previous problem.

It is easy to train infant systems in this way, using a sequence of inversion
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problems derived from an optimization problem —but mature systems with
more experience do not solve optimization problems this way. They use Lsearch
for a special direct solution technique that is close to optimum (Sol 84).

The training sequences that I designed for my own system were constructed
very carefully. At each step in the training sequence, I knew an upper bound
on how long the Lsearch would take, because I knew at least one solution and
at least one code for that solution. In using training sequences such as the one
described for Genetic Algorithms, one usually has no a priori idea as to how
long it will take to solve the problem, and often one doesn’t know if it is at all
solvable by the system.

Nevertheless, I did try a training sequence for a problem solved by one of J.
Koza’s Genetic programs (Koz 90, pp. 16-24). It was the problem of learning an
11 input Boolean multiplexer function. The general k address bit multiplexer
has k + 2k inputs and 1 output. k of the inputs designate an address of one
of the 2k other inputs. The output is the same as the input at the designated
address.

The problem is to construct a Boolean function that simulates the multi-
plexer for all 211 of its input configurations.

Using genetic programming, Koza started with the Boolean functions AND,
OR, NOT,and IF 7 and obtained a solution in 9 generations using more than
seventy million trials. Using Lsearch, and only the IF function, I obtained
a solution in 3 generations using about ten million trials. In general, a very
simple Lsearch obtains a solution for the k address bit multiplexer in just k
generations. It is unclear, however, as to how much longer it would take to do
an Lsearch over the space containing all 4 Boolean functions.

While Koza’s solutions had many extraneous functions in them, the Lsearch
solutions were all of minimal complexity. This makes it much easier to under-
stand the solutions. It also makes it possible to search for common subtrees in
the trees that represent more successful functions. These subtrees could then
be used in constructing new trial functions. I have not yet tried this refinement,
however.

It should be noted that these results, while suggestive, are only theoretical
pen and paper calculations and not directly comparable with Koza’s computer
simulations.

Artificial Life and Organic Evolution are also sources of useful training envi-
ronments. Here we have competition between species. As each species improves,
it presents a somewhat larger challenge to its competitor. As the competing
species evolve together, they present training sequences for each other.

D. Hillis (Hil 90) has used a simulation of this kind of competition to evolve
a solution to a fairly difficult problem in computer design.

My present research continues to be the exploration of training environments
for incremental learning systems. I’m also trying to get a better understanding

7IF is a 3 input, 1 output Boolean function corresponding to a multiplexer with k = 1
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of how probabilistic heuristics are discovered and applied to Lsearch.

5 Relation of this Work to That of Others

5.1 Theoretical Analysis

The five years following the 1964 publications was a time of much activity in
this field, but except for the work of Willis and Levin, little of it seems to have
been inspired by my own work.

Kolmogorov (Kol 65, 68a, 68b, 69) was interested in randomness and com-
plexity of one string with respect to another, as well as the development of in-
formation theory and probability based on lengths of codes. Strangely enough,
he did not appear to be interested in inductive inference. 8

He defined the Algorithmic Complexity of a string to be the length of the
shortest code needed to describe it. A random string was one whose complexity
was about as large as its length. These definitions motivated a group of brilliant
associates to explore their properties.

Martin-Löf (Mar 66) developed a definition of randomness somewhat differ-
ent from Kolmogorov’s, using “randomness tests”.

Kolmogorov had read my 1964 paper by the time that Levin joined his group.
From Kolmogorov’s description of this paper, Levin put my a priori probability
into a more exact form. His work in this area was similar to that of Willis, but
while Willis avoided the incomputability problems of universal machines by us-
ing finite approximations to them, Levin faced these incomputability problems
directly. He defined “semi-computability”; a kind of weakened computability
that enabled him to analyze the behavior of many otherwise intractable func-
tions. While Willis’ work seemed closer to practical realization, Levin’s was a
model of mathematical elegance.

Apparently independently of my own work and that of Kolmogorov, Chaitin
published two papers (Cha 66, 69) defining randomness in terms of program
length. In the first of these papers he informally suggested that the shortness
of a program that describes a sequence might be an index as to how good a
theory that program represents. He did not, however, investigate this idea at
any length.

In the period from 1970 to 1975, Levin (Lev 73b, 74) , Gács (Gác 74) and
Chaitin (Cha 75) defined universal a priori probability distributions on finite
strings. These were closely related to the probability distribution on all finite
strings induced by M(r) (section 3.4) in my original generalization of proba-
bilistic languages.

Cover (Cov 74, Sol 78, p.428) used Chaitin’s distribution on finite strings to
define “Extension Complexity”. This in turn was used to define a probability

8Levin (Lev 95) attributes this to induction being an ill-defined mathematical problem. —
I do not, however, find this convincing.
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measure, which was similar to the fourth model I had described in 1964 (Sol
64a) 9.

In an attempt to devise a better definition of randomness than is afforded by
minimal description length, Schnorr (Schn 73) defined what he called “process
complexity”. This turned out to be the negative logarithm of what I had defined
to be Algorithmic Probability.

For a history of discoveries in this field, as well as detailed treatment of the
discoveries themselves, the book of Li and Vitányi (Li 93) is unexcelled.

5.2 Practical Induction

5.2.1 Optimal Approximations

The convergence theorem (Sol 78, Theorem 3) makes Algorithmic Probability
look very attractive as a means of induction. It is the only induction system we
know of that is “complete”. By this we mean that if there is any describable
regularity in a body of data, Algorithmic Probability is guaranteed to discover it
using a relatively small sample of the data. It is the only probability evaluation
method known to be complete. As a necessary consequence of its completeness,
this kind of probability must be incomputable. Conversely, any computable
probability measure cannot be complete.

We are using the term “incomputable” in a special way. Algorithmic Proba-
bility is as “computable” as the value of π – but with one important difference;
when we make successive approximations to the value of π, we know how large
the error in each approximation can be. In the case of Algorithmic Probability,
we have a procedure for successive approximations that is guaranteed to con-
verge to the right value. However, at no point in the calculation can we make a
useful estimate of the error in the current approximation.

This might be regarded as a serious criticism of the use of Algorithmic Prob-
ability or approximations to it, to solve practical problems, but it is not. It is
a difficulty shared by all probability evaluation methods. If they are complete,
then they are incomputable. If they are computable, (either as independent
probability measures or as approximations to Algorithmic Probability) then
they must be incomplete. This incompleteness implies that there have to be
regularities that are invisible to them. When used with data having regularities
of these kinds, computable methods will have errors of unknown size. It is likely
that all quantitative methods of dealing with uncertainty have this uncertainty
of error size.

It has only been through the analysis of Algorithmic Probability that these
very general limitations of knowledge of error size have become known. I will

9Recognizing that models are identical is often non-trivial. I read Cover’s 1974 paper very
carefully and wrote an extensive analysis of it in 1978 (Sol 78); but it was only recently, on
rereading my 1964 paper, that I realized that one of its models was close to Cover’s “Extension
Complexity”. See Appendix for further discussion.
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show, however, that in spite of it’s incomputability, Algorithmic Probability
can serve as a kind of “Gold Standard” for induction systems – that while it
is never possible to tell how close a particular computable measure is to this
standard, it is often possible to know how much closer one computable measure
is to the standard than another computable measure is. I believe that this
“partial ordering” may be as close as we can ever get to a standard for practical
induction. I will outline a general procedure that tells us how to spend our time
most efficiently in finding computable measures that are as close as possible to
this standard. This is the very best that we can ever hope to do.

To better understand the foregoing, let us consider the following definition
of Algorithmic Probability:

P (x) =
∑

2−li (1)

P (x) is the Algorithmic Probability of finite string x.
li is the length of the ith description of string x.
The sum is over all such descriptions. (See Sol 78, p. 423 for more details).

That the sum is incomputable, is associated with the fact that it is often
impossible to verify in finite time, whether a particular string is a description
of x or not.

Over the years there has been a general impression in the scientific com-
munity that this incomputability would make it impossible to use Algorithmic
Probability as a tool for statistical prediction (see for example, Ris 95 p.197).

From the beginning, however, this difficulty was recognized and methods for
dealing with it were proposed (Sol 64a section 3.1.2.1). Willis (Wil 70) formal-
ized one of these methods in what we will call “Resource Bounded Algorithmic
Probability”.

The most efficient way to implement Resource Bounded Algorithmic Prob-
ability is to approximate equation 1 by the largest lower bound on P (x) that
can be demonstrated in time, T . This is usually done by finding many short
codes for x that give terms summing to that bound. This kind of approxima-
tion to Algorithmic Probability is an example of a “Time limited optimization
problem” and is directly solvable by Lsearch 10.

By getting as large a value of the sum as we can, we get as close as possible to
Algorithmic Probability in the allotted time. This seems like the best possible
way to spend our time computing probabilities, since Algorithmic Probability
is at present the best theoretical induction system we have.

Resource Bounded Algorithmic Probability is then an ideal way to define
“Practical Probability”. It captures a vital feature of any possible practical
application of probability: While the value of Algorithmic Probability is clearly
defined in a mathematical sense, it is incomputable in any practical sense. Any

10Although the technique has been described in detail (Sol 84), I know of no attempt to
solve a real time limited optimization problem using Lsearch.
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value we obtain as an approximation will depend critically on just what com-
putational resources we used to get it. This leads to a definition of Practical
Probability that is a function of three arguments:

1. The data.
2. The a priori information — which is uniquely characterized by our choice

of universal reference machine.
3. The resources available for computation – time and memory.
Any failure to specify each of these arguments exactly can lead to gross

ambiguities in the value of the probability.

5.2.2 Suboptimal Approximations

There have been several suboptimal approximations to Algorithmic Probability.
One of the earliest is that of Van Heerden (Van 63). 11 He considered the
prediction of binary sequences by Boolean functions. His criterion for the best
function to use: Add the length of the description of each function to the number
of errors it made in prediction. Least is best.

We may regard this technique as approximating the sum in equation 1 by
the single largest term we can find.

Before I read his report,I had considered this kind of minimum description
length as an approximation to the universal a priori distribution (Sol 60a equa-
tion 1). The particular form that I used was very general but it always assigned
probabilities that were integral powers of two. While this method clearly did
not give correct probabilities, I was at that time uncertain as to how large the
error was. In my research notes I subsequently called this prediction technique
“The VH method”.

There are theoretical reasons for believing that the error may be small if
the shortest code one has found thus far were indeed the shortest code for the
data. However, for induction problems in which one is uncertain as to the class
of stochastic functions that generated the data (as in psychology, economics,
geology), one cannot know one has the shortest code and the amount of accuracy
lost must remain unknown.

Wallace and Boulton (Wal 68) used what they called MML (Minimum Mes-
sage Length) to obtain a continuum of probability values. They considered
various functional forms to assign probabilities to a sequence of data symbols.
The function selected was the one for which the length of description of the
function minus the logarithm of the probability assigned to the data by the
function, was minimal. This technique is the same as including in equation 1
certain terms in addition to that corresponding to the shortest code found. Since
the sum is larger than Van Heerden’s, it is a uniformly better approximation to
Algorithmic Probability.

11Peter Van Heerden is best known for his discovery of a method to store information
optically in a three dimensional crystal.
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Rissanen started out (Ris 78) with a technique similar to MML which he
called Minimum Description Length (MDL) but he slowly modified it over the
years. The latest version, called “Stochastic Complexity” (Ris 89) is not far
from the negative logarithm of Algorithmic Probability.

Rissanen avoids the incomputability problem by not using all possible func-
tions. He considers limited classes of predictive primitive recursive functions,
then takes a weighted sum of their predictions. The weights are assigned to
the functions using classical ideas on a priori probability distributions, modified
by considerations of code length. Since he sums over more terms of equation 1
than Wallace and Boulton do, he gets a better approximation to Algorithmic
Probability.

We can, however, get even closer to Algorithmic Probability than Stochastic
Probability does. Rissanen’s ”primitive recursive functions” are the functions
that are commonly used in the sciences. They are well behaved and the values
of their arguments for which the functions are defined are known or computable.

A larger, less well behaved class of functions is the set of partial recursive
functions. They are definer for certain values of their arguments, but not for
others. However, if a function is not defined for a certain argument, it is often
impossible to be certain of this fact. These arguments correspond to certain
intractable descriptions of x in equation 1.

We can deal very nicely with functions of this kind, using Resource Limited
Algorithmic Probability. The Lsearch algorithm tells just how much time to
spend trying to verify a potential code that doesn’t seem to be defined.

How often do partial recursive functions occur in probabilistic calculations
involving real world events? It appears that there are many areas of science in
which functional forms are either partial recursive or practically partial recursive
- i.e. the time needed to compute the functions for certain of their arguments
is greater than what we have available, and we cannot tell in advance for which
values of the arguments this is true. Long branching causal chains giving rise
to functions of this sort commonly occur in geology, biology, sociology and
economics.

In predicting earthquakes or the motion of financial markets, we cannot
afford the limitations of suboptimal approximations. We need the full power of
Resource Limited Algorithmic Probability.

A Appendix

A.1 Description of the Five Models

The first 1964 paper (Sol 64a) described 5 models for induction. Four of these
models were based on two kinds of Universal Turing Machines.

The first kind of Machine, M1, was a very general Universal Turing Machine,
with no constraints on its input or output.
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The second kind of machine, M2, was a special 3 tape machine: It had
unidirectional input and output tapes, as well as a bidirectional work tape. The
unidirectional output meant that once an output symbol was written, it could
not be erased.

In M1, once a symbol was written as output, the machine could erase it
and write another symbol if the program told it to do so. M2 also had what I
called in my research notes “The Sequential Property”: if M2(x) = a (x and a
being finite strings), then M2(xy) = ab (Sol 64a, p.16). This means that if we
concatenate anything onto the end of the code for a, then the machine’s output
string must start with the string a 12.

The first model for induction was based on M1. An a priori probability was
assigned to a sequence on the basis of a weighted sum of all possible programs
for that sequence with all possible finite continuations of it. The weight assigned
to a program of length N was 2−N .

The second model (which I now call Algorithmic Probability) was based on
M2. Random bits were fed into the machine as input. The probability assigned
to a particular string, s, was then the probability that the machine would have
as output a string that had s as prefix — i.e. its output would be s, possibly
followed by a finite or infinite number of symbols.

The third model used Machine M1. To obtain the a priori probability of
the string, s, we first select a large number, N . Then C(s,N) is the number of
input strings of length N , that cause the machine to print an output that has s
as prefix, before it stops. C(N) is the number of inputs of length N that cause
the machine to eventually stop, regardless of what its output is. Then the a
priori probability assigned to string s is the limit, as N approaches infinity, of
C(s,N)/C(N).

The fourth model was the same as the third, except that M2 was used instead
of M1.

The fifth model makes probability evaluations by using a weighted mean
of the evaluations given by all possible probability evaluation methods. The
weight given to any particular evaluation method is the product of two factors.
The first factor is the probability assigned to the known data by that probability
evaluation method. The second factor is the a priori probability of that method.
If the smallest number of bits needed for a program to generate a particular
evaluation method is N , then this factor is approximately 2−N for that method.

A.2 Evaluation of the Five Models

The second model is certainly correct. The description of the machine, M2, with
unidirectional input and output is correct in all details. The final expression

12A partial recursive function having the “sequential property” was later called a “process”
by Levin (Zvo 70, definition 3.1) and by Schnorr (Sch 73, p.378). Li and Vitányi (Li 93, P.
238, Definition 4.13)called it a “monotonic machine.”
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(ibid, eq.(7)), gives the conditional probability that the sequence T will be
followed by sequence a.

The conditional probability given in this equation is that of a semi-measure
rather than a normalized measure (Li 93, p. 215) . In general, it is smaller than
a normalized conditional probability. However, Peter Gács has shown (Li 93,
Theorem 5.1, p. 285) that the error in this kind of conditional probability con-
verges rapidly to zero — just as it does for a normalized conditional probability
measure (Sol 76, Theorem 3, p. 426).

The fourth model, also based on M2, is also correct. It certainly converges,
and because it only considers finite continuations of the known sequence, it is
similar to Cover’s “Extension Probability” (Cov 74). While it is better than
Extension Probability in both betting yield and size of error in probability
estimate, I do not know whether it is significantly better.

The first and third models are based on M1, the unrestricted Universal
Turing Machine. The 1964 paper does not describe the machine very exactly.
As a result, while it is possible to define its operation so that the expressions
for probability given by both models converge, it is also possible to define the
operations in ways such that I have been unable to tell whether the expressions
will converge or not. This puts models one and three in a kind of limbo.

The fifth model considers “all possible probability methods.” Unfortunately,
it is not possible to effectively enumerate all such methods, so the recipe, if
taken literally, is meaningless. On the other hand, in practical prediction it is
often quite possible to take a weighted sum of a large number of methods that
are effectively enumerable. At the present time, the best approximations to
Algorithmic Probability that have been programmed, have taken this form (Ris
89).
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1950 Carnap
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1952 Huffman
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1956 Chomsky
1957
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1960 Solomonoff
1961 Minsky
1962 Minsky
1963 Minsky Van Heerden 63
1964 Solomonoff
1965 Kolmogorov 65
1966 Chaitin Martin Löf 66
1967
1968 Willis Kolmogorov Wallace, Boulton 68
1969 Chaitin Kolmogorov 69
1970 Willis Zvonkin, Levin 70
1971
1972
1973
1974 Cover
1975 Solomonoff Chaitin 75
1976
1977
1978 Solomonoff Rissanen 78

Timeline of Papers Referenced
The times are all publication dates, except for “Willis 1968,” which gives

the year that I first read the paper published in 1970.
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