
TWO KINDS OF PROBABILISTIC

INDUCTION

Ray Solomonoff

Visiting Professor, Computer Learning Research Center
Royal Holloway, University of London

Mailing Address: P.O.B. 400404, Cambridge, Ma. 02140, U.S.A.
rjsolo@ieee.org

Abstract

Problems in probabilistic induction are of two general kinds. In the
first, we have a linearly ordered sequence of symbols that must be extrap-
olated. In the second we want to extrapolate an unordered set of finite
strings.

A very general formal solution to the first kind of problem is well
known and much work has been done in obtaining good approximations
to it [LI 93, Ris 78, Ris 89, Sol 64a, Sol 64b, Sol 78, Wal 68].

Though the second kind of problem is of much practical importance,
no general solution has been published. We present two general solutions
for unordered data.

We also show how machines can be constructed to summarize sequen-
tial and unordered data in optimum ways.

1 Introduction

In the early days of Algorithmic Probability , we felt that all problems in predic-
tion could be put in the form of the prediction of a sequence of digital symbols
[Sol 64a, p.2]. Though Algorithmic Probability solved the sequential prediction
problem, it hasn’t been clear as to how it could be applied to many problems in
induction that did not appear to be sequential. The present paper shows how
to do this.

There are at least two essentially different kinds of problems that occur in
prediction. We will describe them and contrast the ways in which they can be
treated.

The first kind of problem is sequential prediction. We have a sequence of
symbols starting at some point and extending (possibly) infinitely. Given a finite
prefix, D, of this sequence, to predict the most likely continuation and/or the
probabilities of various possible continuations. An example might be predicting
tomorrow’s stock price, given the previous historical daily prices of that stock.

1

The data involved can be all numerical, but it may include discrete information
such as newspaper articals or other news of the changing state of the world.
Sequential data can always be represented by a finite string of symbols.

The second kind of problem is prediction of unordered data. We have an
unordered set of n finite strings of symbols, D1, D2 . . . Dn . Given a new string,
Dn+1 , what is the probability that it belongs to the set? Or — given a string,
a , how must it be completed so it is most likely to be a member of the set?
Or, given a string a and a set of possible completions, [abj], what is the relative
probability of each of these completions?

A common example of unordered set prediction occurs in ethnic and formal
languages. We are given a set of examples of strings that are acceptable sen-
tences. Given a new string, what is the probability that it is acceptable? A
common solution technique is to devise a well fitting stochastic grammar for
the known set of strings. Algorithmic probability gives a criterion for goodness
of fit of such grammars [Hor 71, Sol 64b,pp.240-251].

The supervised categorization problem is very similar. We are given a vector
of properties associated with each of a set of mushrooms. The final property
tells if it is poisonous or not. Given the vector of properties of a new mush-
room, except for the final vector component - what is the probability that it is
poisonous?

In numerical statistical analysis, we have as data, a set of pairs of numbers
[xi, yi]. Given a new xj , what is the probability distribution over all possible
values of yj?

We have an unordered set of ordered pairs of strings. Each pair represents a
question and an associated correct answer. Given a new question string, find the
most probably correct answer, or find the relative likelihood of several possible
answers.

The problems of the last two paragraphs may also be thought of as examples
of “stochastic operator induction”. In the first paragraph, we want a stochastic
function so that when we give it xj as input, it will give the probability distri-
bution of yj as its output. Similarly, in the second paragraph, when we insert
our “question” into the stochastic operator, we want a probability distribution
on “answers.”

Section 2.1 gives a formal solution to the sequential prediction problem in
terms of a kind of universal Turing machine. Any describable probability dis-
tribution on strings can be represented by a suitable (not necessarily universal)
Turing machine.

After some data has been analyzed, its statistical characteristics can be
summarized by an apriori probability distribution on all possible subsequent
data. Section 2.2 shows how to construct a Turing machine that represents
such a distribution for sequential data.

Section 3.1 gives a formal solution to the problem of prediction of unordered
data sets, also using a universal Turing machine.

Section 3.2 shows how to construct a Turing machine that summarizes an
unordered data set and yields an apriori probability distribution for the next
finite string.

2

Section 3.3 gives a different formal solution to the prediction problem for
unordered strings that is closer to the approximations that are commonly used
in solving such problems.

2 Sequentially Ordered Data

2.1 Algorithmic probability extrapolates the data string, D , by considering
PM (E) , the aprior probability distribution on all finite strings, E, with respect
to M , a universal Turing machine.1 PM (E) is the probability that the machine’s
output will be a string having E as prefix, if M ’s input is a completely random
binary string.

From this definition, it can be shown [Sol 64a p.14 section 3.2, Sol 78, p.423]
that

PM (E) =
∑

k

2−|Ik|

[Ik] is the set of inputs to M such that M ’s output string has E as prefix.
However the [Ik] have the additional constraint that they are “minimal” in the
sense that if the final bit of a Ik is removed, creating I ′k, then E is no longer a
prefix of M(I ′k). The [Ik] form a prefix set. | Ik | is the length of string Ik .

Suppose we have a known data string, D and we want to know the rela-
tive probabilities of various possible continuations of it. From Bayes’ theorem,
PM (DD1)/PM (D) is the (unnormalized) probability that if string D occurs, D1

will follow.
It should be noted that the expression for PM is incomputable [Sol 78, p.423].

For any practical applications we us approximations. A common method is
to use only one term in the sum – that corresponding to the shortest code
that we have been able to find for the data. This approximation is called
Minimum Message Length [Wal 68] or Minimum Description Length [Ris 78].
If we use more terms in the sum that correspond to short codes, we get better
approximations.

2.2 Question: Does there exist a machine M that summarizes the data D ,
so that PM ′(D1) = cPM(DD1)/PM(D) Here, c is a constant that is the same for
all possible D1.

Observing the creation of D from the random input to M , one might think
that such a machine could be obtained by stopping M as soon as it had produced
D. Whatever internal states it had as well as the content of its memory tape at
that time would then be regarded as the initial state of machine M .

An objection to this approach is that the resultant M ′ would characterize
the state of M for only one input that would yield D (plus possible suffix) as
output. It would neglect all the other possible codes of D and so would usually
not be very close to cPM(DD1)/PM(D)

1All machines herein discussed, whether universal or not, will have unidirectional input
and output tapes, with one bidirectional memory tape.

3

A better method of constructing M ′:
M ′ is a box with four things in it. (1) M (2) a switch (3) a little man (4) a

copy of D.

M
Input

- -

M ′

D

Output of
M

f

AA¢¢

©©

- rHHHHj

-

Output of
M ′

The (random) input to M ′ goes directly into M . The little man watches
the output of M . If it matches D exactly, he switches the subsequent output of
M to be the output of M ′. If the initial output of M doesn’t match D exactly,
the M ′ has no output.

While P ′M (D1) = cPM(DD1)/PM(D) exactly, M ′ is not a very practical way
to realize PM (DD1), because very few of the inputs to M ′ produce any output.
However, at this point we are only concerned here with theoretical models. In
all practical cases, we use approximations. One of the simplest is suggested by
the discussion of approximation of the previous section. We use as M ′, the state
of M after it has produced D, using the shortest code for D that we have been
able to find. It is not difficult to improve this model further by including other
short codes for D.

3 An Unordered Set of Finite Strings

3.1 I will describe two different ways to deal with unordered data. Though they
are equivalent, they shed light on different aspects of the problem.

The first way considers all possible finite bags of finite strings, [Dk]. Dk is
the kth finite string. k = 1, 2, . . . , n. A “bag” is similar to an unordered set of
objects, but each type of object may occur more than once. We want a universal
probability distribution, PM ([Dk]) , over these bags.

PM ([Dk]) =
∑

j

2−|Ij |

| Ij | is the length of the jth description of the bag, [Dk] .
We can represent the set of strings, [Dk] by the single string A1 = D1@D2@ . . . @Dn.

The “@” are punctuation symbols. One way to describe [Dk] is to write a self-
delimiting program for string A1 — a program that generates A1 , then stops.

4

This amounts to a description of [Dk] because from A1, one can always find the
unordered set, [Dk] . If the Dk are all different, there are n! ways to order the
Dk and n! ways we can write Aj ’s that describe [Dk] . If we define

PM (A1) =
∑

j

2−|Ij |

in which [Ij] is the set of all self delimiting programs for A1, then

PM ([Dk]) =
n!∑

j=1

PM (Aj)

If some of the Dk are identical, there are fewer different permutations and
the sum will be over fewer Aj .

This definition of PM can be used to give a formal solution to any of the
prediction problems that were mentioned.

Suppose that [Dk], k = 1, . . . , n is a sample of sentences generated by some
unknown stochastic language. We are given a new string Dn+1 , and we are
asked the probability that it would be generated by the language.

A solution is PM ([Dk] ∪Dn+1)/PM ([Dk]). Here ([Dk] ∪Dn+1) is the n + 1
member bag that consists of [Dk] plus the new member Dn+1.

3.2 The “Summarizing Machine” question corresponding to the problem in
section 2.2 is:

Given a bag [Dk], k = 1, . . . , n and a string, Dn+1, can we devise a machine,
M ′ such that

PM ′(Dn+1) = cPM([Dk] ∪Dn+1/PM([Dk])

We construct the machine M ′ as before, with the following modifications:
The little man watches the output of M . If and only if it produces a string

that is a suitably punctuated permutation of the [Dk] , he switches the output
of M to be the output of M ′. When M ′ (and M) subsequently have random
input, then the probability that M ′ will produce Dn+1 and either stop or follow
with @ is proportional to PM ([Dk] ∪Dn+1/PM ([Dk]).

3.3 We shall describe a second method of dealing with unordered data that is
closer in form to approximations that are most often used. First, let us consider
the technique by which Minimum Message Length or Minimum Description
Length deal with unordered data.

Let [Mk] be a set of machines or algorithms. Each Mk is able to assign a
probability to every conceivable finite string, Dj . Call this PMk

(Dj).
The probability assigned to the set [Dj], j = 1, . . . , h is

P (Mk)
h∏

j=1

PMk
(Dj) (1)

P (Mk) is the probability assigned to Mk via its Minimum Message or De-
scription Length, and Mk is chosen so that (1) is maximum. In general, maxi-
mum probability corresponds to minimum code length.

5

The algorithmic probability version is about the same, but it sums over all
Mk’s and obtains the PMk

(Dj) values a little differently.
Let Mu(a, b) be a universal machine with 2 inputs.
Its first argument describes the machine it is simulating, and the second

argument describes the input to the simulated machine. Since Mu is universal,
for any machine M , there exists an aM such that for all s,

Mu(aM , s) = M(s) (2)

The way this works: we put tape aM into Mu. Mu runs until it has read all
of aM , and eventually it begins to ask for bits of s. At this point, it acts exactly
like M(s).

The universal algorithmic probability distribution is then:

PMu
([Dn]) =

∑

j

(2−|aj |
h∏

n=1

Pj(Dn)) (3)

2|−aj | is the probability associated with the jth machine description, aj .
Pj(Dn) is the probability assigned to Dn by the machine described by aj .

Pj(Dn) =
∑

k

2−|rnjk| rnjk | Mu(aj , rnjk) = Dn

| rnjk | is the length of the kth self delimiting program for Dn via Mu(aj , ·),
the machine described by aj .

Suppose P (Dn) is any computable probability distribution over all finite
strings, Dn. Then P () can always be represented by a machine Mj , such that
2

P (Dn) =
∑

k

2−|rnjk| rnjk | Mj(rnjk) = Dn (4)

“ Mj(rnjk) = Dn ” means that for input rnjk, Mj prints Dn, then stops.
If aj is a description of P (·), in that Mu(aj , ·) = Mj(·), then PMu([Dj])

(equation (3)) includes in its summation, the term

2−|aj |
h∏

n=1

Pj(Dn)

Since Pj(·) = P (·) for this value of aj , it is clear that

PMu([Dn]) > 2−|aj |P ([Dn]) (5)

aj can be any code for a machine representing P . If we select the shortest
code, (5) will be a stronger statement. More generally, (5) says that

2The construction of such a machine is described in [Wil 70, p.252, Theorem 12], but see
[Leu 78, Lemma of last theorem] for a more transparent demonstration.

6

PMu
([Dn]) > cP([Dn]) (6)

and c is independent of [Dn].
We can strengthen (6) further with a larger value of c by allowing c to be

generated by the sum of all codes for Mj ’s that represent P : i.e.

c =
∑

j

2−|aj| aj | ∀r Mu(aj, r) = Mj(r) (7)

Here, [Mj] is the set of all machines, Mj , that satisfy eq. (4).
Why are we interested in larger values of c? In sequential prediction prob-

lems, it has been shown that if we use PM () to estimate conditional probabilities
of symbols in the data instead of P (), the probability distribution that actu-
ally generated the data, then our expected total squared error in probability
estimates will be less than − 1

2 lnc [Sol 78 p. 426, section IV].
The larger c is, the smaller our expected error. It is likely that a similar

error bound will be found for unordered data, so, in this case as well, we want
c as large as possible.

In some applications such as finance, probability estimates are competitive
and small differences in error translate into sizable economic sums.

Large c means that the [aj] of equ(7) are small – that the machines, Mj that
represent P , can be simulated by Mu using short codes .

ACKNOWLEDGMENT

This paper is the outgrowth of a correspondence with Chris Wallace, and
owes much to his insightful criticism.

References

[1] (Hor 71) Horning, J. “A Procedure for Grammatical Inference,” Proceed-
ings of the IFIP Congress 71, Amsterdam, North Holland, pp. 519–523,
1971.

[2] (Leu 78) Leung-Yan-Cheong, S.K. and Cover, T.M. “Some Equivalences
Between Shannon Entropy and Kolmogorov Complexity,” IEEE Transac-
tions on Information Theory, IT-24:331–339,1978.

[3] (Li 93) Li, M. and Vitányi, P. An Introduction to Kolmogorov Complexity
and Its Applications, Springer-Verlag, N.Y., 1993.

[4] (Ris 78) Rissanen, J. “Modeling by the Shortest Data Description,” Auto-
matica, 14:465–471, 1978.

[5] (Ris 89) Rissanen, J. Stochastical Complexity and Statistical Inquiry,
World Scientific Publishing Company, 1989.

7

[6] (Sol 64a) Solomonoff, R.J. “A Formal Theory of Inductive Inference,” In-
formation and Control, Part I: Vol 7, No. 1, pp. 1–22, March 1964.

[7] (Sol 64b) Solomonoff, R.J. “A Formal Theory of Inductive Inference,” In-
formation and Control, Part II: Vol 7, No. 2, pp. 224–254, June 1964.

[8] (Sol 78) Solomonoff, R.J. “Complexity-Based Induction Systems: Compar-
isons and Convergence Theorems,” IEEE Trans. on Information Theory,
Vol IT–24, No. 4, pp. 422- -432, July 1978.

[9] (Wal 68) Wallace, C.S and Boulton, D.M. “An Information Measure for
Classification,” Computing Journal, 11:185–195, 1968.

[10] (Wil 70) Willis, D.G. “Computational Complexity and Probability Con-
structions,” Journal of the Assoc. of Comp. Mach., pp. 241–259, April
1970.

8

