PERFECT TRAINING SEQUENCES AND THE COSTS OF CORRUPTION
- A PROGRESS REPORT ON INDUCTION INFERENCE RESEARCH

R.J. Solomonoff
Oxbridge Research, Box 559, Cambridge, Ma. 02238

Aug, 1382

Abstract: A Training Sequence is an ordered set of problems arranged
so that a student or program solving each problem thereby becomes
more able to solve subsequent problems in the set. Conceptual Jump
Size (CJS) is a measure of the computational cost needed to solve a
problem, given that certain information has already been acquired

by the student.

A Perfect Training Sequence is one having characteristics that
make it particularly easy for certain kinds of machines to solve
them. One important characteristic is that the CJS of each problen
in the sequence is acceptably small.

A specific kind of perfect training sequence is described along
with a program that uses an algorithm by L. Levin to solve the
seguence.

We then discuss the effects of corruptions on the training
sequence — departures from "Perfectness". Such corruptions can take
the form of too few (or actual omission of) examples of critical
concepts and/or the misordering of various problems in the sequence.
Each of these corruptions lengthens the time needed by the student
or program to solve the sequence. We try to devise problen
solving strategies that minimize this cost.

More general kinds of problem solving algorithms are then
discussed, followed by some remarks about the motivation for this
work - its importance as an approach to A.I. - in particular, its
bearing upon the problem of representing knowledge.

PERFECT TRAINING SEQUENCES AND THE COSTS OF CORRUPTION

Suppose we give a student a very difficult problem,o< ,0 . He
tries to solve it for a long time but cannot, because he has not yet
acquired the concepts needed for a quick solution.

On the other hand, we can give this student an easy problem,<o,
for which he has already acquired almost all of the needed concepts.
In solving o4&, the student acquires one or more new concepts which
make it easy to solve™, the next problem in the sequence. After
he has solved =, we present him withoG,5 ..., each problem
exercising old concepts and/or introducing simple new oOnes.
Eventually we give him o 00 , which he now finds easy to solve,
because he has almost all of the needed concepts.

We will call a sequence of problems like this, a “Training
Sequence”. The present paper will consider the design of such
sequences so that the student can learn to work them with minimum
effort. Though most of the results discussed apply to both machine
and human students, we will consider only machines in detail. In
machines, by "minimal effort", we will mean minimal computation cost.

To begin with, problems will consist of question-answer pairs,
(Q: A;). Here Q. and A7 are binary strings, but more generally the
symbols may be from any finite alphabet. The student is to find a
short program relating Q. to A¢. ilore exactly, if M is some
reference machine (usually a Universal machine), we want a program,
P, such that M (P,Q®;) =A; . Furthermore, we want P to have as
few bits as possible. If P is a short program, then it is more
likely that the algorithm M (P,») will extrapolate well - so that

if a different Q; is used, the correct Ay will be produced as output.

Starting with a Tabula Rasa machine,M , having minimal a priori
information, L. Levin (1) has devised a simple algorithm for finding
short codes, Fo such that M(f ,Q.)=Aa,

If P is a solution to the problem, then given
M, Q, and A , Levin’s algorithm will findPo with a computation cost
less than about 2'®'W(f.), Here IPsl 1is the number of bits in Fs .
and is a measure of its information content. W(f) is the
computation cost of the calculation, M(P,,@,).

Ies |

We will define & '"W(P>) to be the Conceptual Jump Size (CJS)

from the Tabula Rasa state of M to the solution Po of the problem
(Q., Ao).

After Po has been found to solve (Qo, As) we give the system the
next problem, (@, ,A,). It tries Fo on this problem. If M(P, Q)=A,
then it stops. If it does not work, the system tries to find a
minimal modification of P, that will work.

Let M7(C fo,X,)=f, . Here M’ is a machine that produces
modifications infs . P, the output, is the modification of Po
that is described by ¥, . For this particular kind of machine,

M (Ps,A)=€, 1i.e. the null modification leaves P, invariant.

We use short strings, X;, to produce simple modifications of P,
as trial values forf’, . Then M(f ,qQ,) is calculated and compared
with Ay. We are looking for a short string, X, such that
MIM(P,, %), @)= A, and M(MI(e ,X,,Q)=A, are both true.

As before, we use Levin’s search algorithm to find such an X,.
As before, the CJS between the solution P», able to work only(Q., Ao)
and the solution P, able to work both(Q.,A) and(&,, A,) is

21w P, Ro, Ri)

Here W(p,, Qo,Q,) is the cost of computing P, from X, and
trying it out on both @, and Q.

As before, the CJS is an upper bound on the computational cost
of finding P, given F, .

The system then continues as before, and works problems (Qz,AL),

(Qs,A;) . a4y etc., to the end of the training sequence.

Training sequences for machines are written much as lessons are
prepared for a human student by a very careful teacher. A sequence
of problems is devised so that each problem needs few additional
concepts beyond the previous problem. Using Levin’/s formula we can
find the CJS between the solutions of successive problems. If in
all cases, the CJS is within the practical capacity of our computer,
the sequence is satisfactory. 1If it is not, then we have to break
the excessively difficult concepts into several simpler ones by
inserting new problems between pairs of problems where the CJS was
too large. For any set of solutions to a training sequence it’s
possible to use Levin’s formula to obtain an upper bound to the cost
of finding all the solutions.

While the method outlined for writing solvable training sequences
is close to workable, the solution algorithm needs to be modified.
This is because the first solution that Levin’s algorithm finds may
not be short enough. One approach to this difficulty is to choose
a CJS 1imit,/\, and then, for all problems, search through all
possible solutions with cJS <A. Of these solutions to a particular
problem, we retain the solutions of minimal length.

If we find a problem that has no solution for CJS <A, we double

A and start over at the beginning, using this largerlR value for all

of the problems. This doubling is repeated again and again, if

necessary, until the whole set of problems is solved. We end up
with a value of A that’s adequate for all problems but not much
larger than is necessary.

There is another difficulty in the proposed system.
Occasionally a problem will have an ad-hock solution that is very
short, that works for one particular problem, but does not deal
with the concept that the problem is designed to illustrate. One
way to deal with this is to have many examples of each concept in
the training sequence.

To solve training sequences of this sort, we proceed as before,
but whenever we come to a problem that demands a new Py (i.e. the
problem has new concepts in it), we first obtain a Ps that will
solve the new problem (as well as all of the previous problems),
then we see how many subsequent problems it can solve without
modification. Let this number be N,,(. For each solution, P:,;
that we obtain for the ™ new concept, we obtain a corresponding
Vif . When we have completed the search for the ™ concept, we
choose the Fu,j /s for which N¢j is maximum.

If we are very careful in constructing our training sequence
it will be solvable by the foregoing technique. We will call a
sequence that is so solvable a "Perfect Training Sequence"®

Ordinarily, Perfect Training Sequences are difficult to write,
and they do not often occur in nature. The commonest ways in which
a training sequence deviates from perfection, is that it may leave
out important concepts or have too few examples of them. Another

common deviation occurs when some of the concepts occur in the wrong

order. Each of these corruptions of the sequence makes it more
difficult to solve and makes it necessary to modify the original
technique that searches for solutions.

The search algorithm that has been considered can be regarded
as a YBlind" search. It is an exhaustive search in a region of
description space about the position of the previously adequate
solution. It is “Blind" in the sense that the choice of new
trials is not in any way conditioned by information about the new
problem that the old solution failed to solve. In this sense the
technique is very much like organic evolution., It is most like the
mutation part of the evolutionary mechanism, in which trials of new
genotypes are clustered in description space about previously
successful genotypes.

In the present search techniques, there has been no effort
to model the recombination mechanism of organic evolution, in which
partial descriptions of somewhat successful trials are recombined to
make new trials. Techniques of this sort could probably increase
search efficiency as well as give us a good programmable model of
part of organic evolution.

A direction of search that seems even more promising is to
consider more goal directed searches. These certainly seem more
efficient than pure "blind search" and we have investigated some
algorithms of this kind. .

So far the kinds of problems considered for training have
been the learning of algebraic notation from examples. e.g. To
illustrate the operation " + * in RPN we have:

Qs 3.5719, 1.2216, +
At 4.7935

A typical training sequence would first introduce single unary
operators, then nested unary operators, then binary operators, then
mixtures of unary and binary operators.

Later we expect to have simple equations to solve, then more
complex equations in one unknown, then simple equations in two
unknowns, etc.

We have not tried to work difficult problems, since in the
present context, they are of no particular interest. A difficult
problem differs from an easy one only in that it has a larger CJS,
so its solution is expected to take more computation time than an
easy problem. The same search algorithm is used in both cases,
however, and this is our focus of interest.

What is the value of this study of Perfect Training Sequences?
We have noted that they do not occur naturally in the real world
and they are difficult to write. Nonetheless they can give us a
good understanding of how to write training sequences for human
students that facilitate most rapid learning.

Another motivation is that these sequences can be useful models
of part of the process of organic evolution. In particular, the
CJS concept is closely related to mutation probability.

Another possible application: If we are able to devise usable
techniques for dealing with Training Sequences with a fair amount
of misordering of problems that are otherwise "Perfect", then
sequences of this sort are not so difficult to write and may very

well occur in natural environments. —F Zco Cuwment sheay

Perhaps of most importance, the Perfect Training Sequence gives
us a formalism by which we can integrate any describable problem

solving techniques into a unified system - so we can compare various

techniques and optimize the system as a whole. Suppose 3 is a
certain problem solving technique. Then we can devise a training
sequence such that for problems at the end of that sequence, Levin’s
search procedure is essentially equivalent to the technique.@ .
Furthermore, Levin’s algorithm gives us one usable solution to the
problem of how to represent knowledge. This representation is in
the form of short codes, and these short codes express all of the
regularities, all of the useful ideas that we have been able to

find in the data.

Footnote 1t L. Levin, "Universal Sequential Search Problems"
Problemy Paredachi Informatsii, Vol. 9, No. 3, pp. 115-116, July-
Sept., 1973, translation by Plenum Publishing Corp., N. Y. 1975,

While theorem two of his paper is based on Levin’/s search
techniques, he does not explicitly describe the technique itself
or his simple proof of its effectiveness. These have been given
at various times in lectures at M.I.T.

