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Abstract

In order to generate a universal probability distribution to extrapolate
a binary string x of length i, we feed random bits into a universal device,
M . When we find an input string that gives an output matching x, we
continue the successful input with random bits until M produces a zero or
one as output. The relative probabilities of these two continuations can
give a normalized prediction for the probability of the symbol following
x. There is, however, a probability, Pi+1(u) that the continued random
input string will not generate any output for the i + 1th symbol.

We will show

E
µ

n∑
i=1

Pi(u) ≤ kµ ln 2

Here E
µ

is the expected value with respect to µ, the probability distri-

bution that created x.
kµ is the Kolmogorov complexity of µ with respect to M .
n is any positive integer.
Usually we don’t know µ and so we don’t know kµ. However, if µ is

the uniform distribution, we can usually find a good upper bound for kµ.

Introduction:

A universal distribution on binary strings, x can be defined using a universal
Turing machine with unidirectional input tape, unidirectional output tape and
a bidirectional work tape. If we feed random bits into this machine, there is
some probability P (x), that M will print an output beginning with x. P (x)
is the universal probability of x with respect to M . This probability, however,
is not a measure, it is a semimeasure, and many inputs that produce x, will
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never print anything after that, but will continue to compute forever. We will
investigate the probability of this occurring.

Section I

Suppose we have an ensemble of strings produced by a probabilistic source, µ.
We do not know µ, but we are given xn, the first n bits of a string produced
by it. We can use the universal distribution to estimate the probabilities of the
next bit of xn being zero or one.

We use the universal Turing machine M , to make these estimates by feeding
it random strings. It sometimes prints xn, then after printing xn, it will with
probability Pn(0), print a zero, with probability Pn(1) it will print a 1, and with
probability Pn(u) it will never print again — so the next symbol is “undefined”.

We will show that

E
µ

n∑

i=1

Pi(u) ≤ kµ ln 2 (1)

E
µ

is the expected value with respect to µ, the generator of xn.

kµ is the length of the shortest program with which M can describe µ.
kµ is a kind of “Kolmogorov Complexity” of µ with respect to M so that

kµ ln 2 = ln 2kµ may be regarded as “the natural complexity of µ with respect
to M . The appendix has more details on the relation of µ to kµ.

To prove 1: Consider the semimeasure P (xn). P (xn) is the probability with
respect to the Universal Machine M , of an output string beginning with xn,
when M has random input.

Let xi
n be the ith bit of xn, so xn = x1

n x2
n · · ·xn

n.
Let Pi(xi

n) be the probability of xi
n, given the previous i− 1 bits of xn.

Then P (xn) =
n∏

i=1

Pi(xi
n) will be the unnormalized probability (semimea-

sure) assigned to xn by M . The normalization factor for the ith factor will be
1

Pi(0)+Pi(1)
= 1

1−Pi(u) , since Pi(0) + Pi(1) + Pi(u) = 1.
The normalized form of P (xn) becomes

P ′(xn) = P (xn)
n∏

i=1

1
1− Pi(u)

(2)

Willis and Levin have shown (Sol78 p. 424; Theorem 2.) that

P (xn)
µ(xn)

≥ 2−kµ (3)

µ(xn) is the probability assigned to xn by the probabilistic source, µ.
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Since both µ and P ′ are normalized probability distributions, E
µ

ln P ′(xn)
µ(xn) is

the Kullback-Leibler distance between µ(xn) and P ′M (xn). This distance 1 must
be ≤ 0, so

E
µ

ln
P ′(xn)
µ(xn)

≤ 0 (4)

Substituting P ′ from (2) into (4) gives

E
µ

ln
P (xn)
µ(xn)

+ E
µ

n∑

i=1

ln
1

1− Pi(u)
≤ 0 (5)

From (3) we know that

E
µ

ln
P (x)
µ(x)

≥ −kµ ln 2 (6)

and hence

−E
µ

ln
P (x)
µ(x)

≤ kµ ln 2 (7)

Adding inequalities (5) and (7) we get

E
µ

n∑

i=1

− ln(1− Pi(u)) ≤ kµ ln 2 (8)

Then, since − ln(1− z) = z + z2

2 + z3

3 · · · , we have

E
µ

n∑

i=1

∞∑

j=1

(Pi(u))j

j
≤ kµ ln 2 (9)

Since all of the terms of (9) are ≥ 0,

E
µ

n∑

i=1

Pi(u) ≤ kµ ln 2 (10)

Which was to be proved.
1That the K − L distance is always ≤ 0 was shown by Gibbs about a century ago, and

more recently by Kullback and Leibler. (CT91) pp. 18-26, gives a very readable discussion
and proof. It may also be shown using Lagrange multipliers, as in (Sol78) Theorem 4, Lemma
2
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Section 2: Some Implications of These Results

(8) tells us that the expected value of the log of the normalization factor is ≤ kµ.
This is the strongest result. (8) implies (10), but (10) does not imply (8).

(10) assures us that Pi(u) converges more rapidly than 1
i . We do not suggest

that Pi(u) < c/i for some finite c, but rather that the partial sums for Pi(u) are
less than those of 1

i for large enough i.
It is notable that the forgoing results are valid when M has an arbitrarily

large alphabet, and may or may not have a “stop” state.
How does this relate to Solovay’s result of Sept. 12, 1989 (LV97 p. 301)?

Solovay showed that there were an infinite number of cases in which P (x)/(P (x0)+
P (x1)) was very large — So P (u) was close to 1. However these events occur
very infrequently and the theorem says that for a long sequence they don’t have
much weight.

The results of the present paper are for upper bounds on Pi(u). For discus-
sion of lower bounds see (Hu05) Problem 2.7, p.62.

When a universal monotone machine is used for induction, we usually don’t
know µ and so we don’t know kµ. However, if we are simply interested in Pi(u)
for a particular universal machine, M , we note that our previous results are for
any normalized distribution, µ. If we set µ to be the uniform distribution (see
appendix for discussion of the uniform distribution), then

E
µ

Pi(u) =
∑

|x|=i

2−iP (u|x) (11)

P (u|x) being the probability that x will be followed by u. Equation (10)
then gives

n∑

i=1

∑

|x|=i

2−i P (u|x) ≤ kµ ln 2 (12)

kµ is the length in bits (usually small) of the shortest program, p, such that
M(px) = x for all x.

Appendix: Monotonic Machines and Associated
Probability Distributions.

A “Monotonic Machine” is a Turing machine with unidirectional input and out-
put tapes and a bidirectional work tape. The input tape is “read only”. The
output tape is “write only”. A universal monotone machine was used in the
introduction to define a probability distribution over all finite strings. If the
monotone machine is not universal, we still get a probability distribution in
this way, but it is not a universal probability distribution. Willis and Levin
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(Sol78 p. 424) have shown that just as each monotone machine has an associ-
ated probability distribution on strings, conversely each computable probability
distribution on strings has an associated monotone machine.

Suppose µ(x) is a probability distribution on strings and Mµ is the associated
monotone machine.

If M is a universal monotone machine then it can simulate Mµ using a finite
string, pµ — so for all x,

M(pµx) = Mµ(x)
In this case it is easy to show (Sol78 p. 424) that PM (x) ≥ 2−pµµ
In section 2 we let µ(x) be the uniform distribution: i.e. µ(x) = 2−|x|

Here |x| is the length of string x. In this case Mµ(x) = x and usually M ’s
instructions to simulate Mµ are very simple — they involve nothing more than
telling M to copy symbols from the input tape directly onto the output tape.

Acknowledgement: Much thanks to Paul Vitányi and Marcus Hutter for
good discussions enabling improvements in the paper.
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