
MAIN Points of Algorithmic Probability
Ray Solomonoff

9/23/1985

1 What are some of its important characteris-
tics?

1. (Important!) Definition of randomness. (Edit note: see Note 15 for ex-
planation)

2. How it can be defined in terms of a universal machine or universal algo-
rithm.

3. (Important!) PM (Edit note: Algorithmic Probability with respect to ma-
chine M) goes from a set of data (Edit note: which can be real world
data) to probability distribution.
Kolmogorov’s 1930 "Euclidification" of probability enabled probability dis-
tribution to lead to probability distribution, but not real world data to
probability distribution.

4. Unlike the frequency concept of probability, it enables us to get reasonable
probability estimates for very small samples, and even gives estimates for
the probability of events that have never occurred before.

5. It has the completeness property: from sample of the output of a stochastic
source, it will be able to discover the true probabilities associated with the
generator. It will do this with a relatively small sample.

6. Any complete probability evaluation method must be incomputable. Con-
versely, any computable probability evaluation must be incomplete. It is
inherently impossible to put a useful upper bound on the error of any
incomplete probability evaluation method (or any estimate of a complete
probability method.)
In using computable approximations to PM , the size of the error is of ne-
cessity unknown. However, we can use Algorithmic Complexity theory to
give a system that gives us the best probability values possible in a small
amount of computing time.
(Edit note: The following paragraph was added from Number 14, as was
more-or-less planned in there.)
While the size of error in probability estimates can never be known with

1



any useful accuracy, Algorithmic Probability gives us a way to spend our
time in an optimum way so that at any time our probability estimate is
about the best possible.

7. An advantage of PM over other probability evaluation methods, is that in
approximating PM , we always know what computations to do in order to
attempt to improve the accuracy of our probability estimate, though we
never can know how much (if at all) our probability estimate has improved.

8. PM is a completely Bayesian method. The a priori probability on all pos-
sible objects is obtained by considering a Universal Turing Machine (or
any other Universal process) that can reproduce all possible objects to be
considered as its possible outputs.
If the machine has random input, each possible output will have some
probability of being generated by the machine. This probability is that
which we use for the Bayesian a priori probability.
The unavailability of this a prior probability distribution was, up to now,
the only thing preventing Bayesian statistics from being a complete so-
lution to all problems in statistics. Algorithmic Probability gives us this
needed distribution.

9. The conditional probabilities obtained via PM are relatively insensitive
to the choice of the Universal Turing Machine used for reference. This
sensitivity is further reduced if a large amount of data is used for the
probability estimate.

10. One objection to the use of Algorithmic Probability is not that it is in-
computable, but that it takes too long to compute i.e. its computational
complexity is too high.
However, by use of suitable training sequences and or the construction of
concept nets, the computational complexity can be reduced to no more
than any other probability evaluation method of equivalent "accuracy".

11. The study of concept nets and training sequences: this enables us to con-
struct very intelligent machines - but it also enables us to understand the
learning process in humans, and find ways to teach them most effectively.

12. That just about all problems can be expressed as inversion (inv) or time
limited optimization (oz) problems (Edit note: See Footnote 1 for defini-
tions of inv and oz problems).
That Levin’s Search method is an ideal way to search for an optimum
solution to a problem (Edit note: See Footnote 2 for description).
Levin’s search method gives a near minimum solution time for both kinds
of problems if all of one’s knowledge about the problem is included in a
suitable conditional probability distribution relating the problem to pos-
sible solutions — or alternatively all one’s knowledge is in the form of a
probability distribution that tells the probabilities for various choices in
the maze of choices that one has in searching for a solution.

2



13. The concept of Conceptual Jump Size (CJS) (Edit note: See Footnote 3
for definition): Given a certain specified knowledge in a machine — both
heuristic and problem-specific knowledge — CJS tells how much time it
would take for that machine to solve a particular problem in a particular
way - either an inv or an oz problem. It makes it possible to design training
sequences and concept nets without actually running any programs.

14. This was added to Number 3, as some version of this was planned to be
moved.

15. Algorithmic Probability gives us a very good understanding of random-
ness.
(Edit note: added from other notes by Ray): There has been much work on
development of Algorithmic Complexity to define randomness. Relatively
little on using Algorithmic Complexity to define probability and then to
define randomness in a simple way. An approach to defining randomness
of a finite sequence is that all future continuations of the sequence are
equally likely. Algorithmic Probability makes it possible to put such a
definition into an exact form and analyze its properties.

Edit note: Footnotes are taken from Ray’s other reports.

(Footnote 1) Inversion problems: Given a string, s and a machine, M , that
maps strings to strings. Find in minimum time, a string, x, such that M(x) = s.
Solving algebraic equations, symbolic integration and theorem proving are ex-
amples of this broad class of problems.
Time limited optimization problems: Given a time limit T , and a machine M
that maps strings to real numbers, find within time T the string x such that
M(x) is as large as possible. Many engineering problems are of this sort — for
example, designing an automobile in 6 months satisfying certain specifications
having minimum cost. Constructing the best possible probability distribution
or physical theory from empirical data in limited time is also of this form.

(Footnote 2) The search is done in the order of increasing amount of t/p; here
t equals time needed to generate, and to test the validity, of a trial solution
string of concepts, and p equals the a priori probability that the string is a
correct solution. The greater the program’s a priori probability, the greater is
its probability of being a correct solution. (The a priori probability will be an
estimate, since the true prior is incomputable). In the case of the inv problem,
M(x) = s, a correct solution is any algorithm that can operate on both M(·)
and s to generate x. Levin’s search is closely related to the CJS of the success-
ful solution strings (see Footnote 3). Ray’s report, ‘Optimal Sequential Search’
(1984) (Raysolomonoff.com/pubs/opseq.pdf) gives an excellent explanation of
Levin’s Search, and a proof of its validity.

(Footnote 3) The CJS (conceptual jump size) of a program z is tz divided

3



by pz where pz is the apriori probability of z and tz is its running time. (The a
priori probability will be an estimate, since the true prior is incomputable).

4


