
LevinSearch79 — Review of Levin 1979

Ray Solomonoff

Oxbridge Research
Mailing Address: P.O.B. 400404, Cambridge, Ma. 02140, U.S.A.

prettyvivo@gmail.com http://raysolomonoff.com

1.25.79 Rev (Levin) page 1

This will review recent results in “Levin 1979”; (∼ 20.01 to 37.01: Especially
31.25 to 37.01). I will try to refer to exact region so that an expected explanation
will be available if necessary.

This is a plan for a preliminary TM (Thinking Machine) — A description of
the training sequence and just how the training sequence is solved. It includes
some discussion of TM2. In particular the search routine is treated exactly.

The corpus itself is an ordered sequence of induction problems. Each problem
is a sequence of symbols (≡ to “sub-corpus”). The problem in each case is to find
a short code (and/or many short codes or many longer codes) for the sequence
or an “honest” way to assign a high aprip to that sub-corpus. (an “honest”
probability assignment is one that can be backed up by codes).

[.15] This general problem is near “adequate”: in the sense that a solution to
it would be readily transformed into a solution to all other induction problems
— and therefore probably just about all scientific problems, including non-
induction problems like NP problems. (see “Levin 1979”, 90.33 [all similar
numbers over 10 refer to “Levin 1979”]).

How the problem is solved: For each problem (≡ sub-corpus), we want to
find an algm (algorithm) that takes the entire sub-corpus (≡ sc) as input (this
is not a sequential input; the machine knows when the sub-corpus ends), then
presents as output a set of induction codes and/or an honest aprip to the sub-
corpus. If M is a Universal Machine, then M (q, sc) = s1, s2, s3, . . .; q is the
description of algm, sc is the finite sub-corpus of interest, s1, s2, s3 . . . are various
short induction codes. The algm M(q, .) looks at the entire sc and tries to find
short codes for it. Examples of algms that do this are: linear (or any other)
regression, clustering, etc. (see 33.20 for a brief list of examples). In the case of
linear regression, the algm makes a correlation matrix (which looks at the entire
sc) which it uses to obtain the linear coefficients and σ2 for Gaussian predictive
coding.

Sometimes there will be ambiguity as to how to divide a code for the sub-
corpus into a “q” (≡ algm description) and the rest of the sub-corpus description.

1

[marginal note: pc’s of concepts depend on pc of corpus as coded by these
concepts.]

e.g. in linear regression: a code (set) would be:

(L.R.), 3, 0.11, 1.2, 01.5, 2.6, seq. of Gaussianly
name of no of σ2 the 3 coeffs coded errors.
algm coeffs
(Lin. Reg.)

“L.R., 3” (3 = number of coefficients ≡ m) would give a single aprip to the
sub-corpus and a set of codes clustering about the shortest code. “L.R.” alone,
would give a sequence of aprips: one for each value of m — these would be
summed to get the total aprip.

Usually, we will choose the shorter algm’s description, because this usually
reduces total search time (see 35.30–37.01; 35.01–.28 is also helpful; however
note 98.01).

————————————————————————————

1.25.79 Rev (Levin) page 2

A uio umc (universal input–output universal machine) is used (≡ process):
so that the theorem about

∑
cc <= cci/pci is true. (cc is computation cost)

Search Technique: The algms are tried in order of ≈ 2−qi/Ti ≈ pci/cci —
Where 2−qi is the aprip of the ith algm; and Ti is the computer cost of creating
the ith algm and using it to obtain the pc of the sub-corpus with respect to it.

The search is done by a “partial” (as in “partial recursive functions”) listing
of all algms in order of their pci’s (≈ 2−qi if the shortest description of it
is much better than other descriptions). This listing must be “partial” since
certain descriptions will not describe actual prediction algms – i.e. they will
not take finite time to compute the pc of the sub-corpus. [Note that the set of
induction algms (≈ cpm’s) is not recursively enumerable].

[.10] If one has a total cc available of Ta one discards an algm as soon as its
2−qi/Ti becomes < 1/Ta, so only 2−qi/Ti > 1/Ta are accepted.

If there is a very good algm with description q0 and its
∑

cc is T0 for the
sc, then this algm will be discovered in a search for when the search parameter
1/Ta < 2−q0/T0 is used.

If search parameter Ta is used, Ti < Ta2−qi (for all trials used) (.10) The
total search time is

∑
Ti which is < Ta

∑
2−qi < Ta ≈ T02q0 = T0/pco . Since∑

i 2−qi =
∑

of pc’s of description < 1. Also by Kraft inequality since the
qi are descriptions of finite objects (including stop instructions) and therefore
form a prefix set. In cases of interest, I think pc0 will be large – say > 2−10. So
1000T0 will not be a very long search time.

Since T02q0 is not ordinarily known, we will chose a certain Ta as a search
parameter, and complete that search; then use 2Ta and complete that search;
then use 22Ta and complete that search; etc. This doubling technique will at

2

most make total search time 2×T02q0 . (See 29.01–.10, 29.20–29 and 33.35-34.20
for discussion of shortcuts).

[.30] ————————————————–

[.32] Construction of the initial language used to describe the Algms:
This is done by listing a large number of algms that have been very useful in
predicting the kinds of sub-corpi of interest. (See 33.20ff for a few examples of
such algms). We then try to “factor” these algms into a set of concepts that
can (most compactly, minimally) express all of the algms. Each of the concepts
devised is assigned a pc, such that the corpus of algms being used is expressed
most compactly.

[.36] Updating old concept pc’s. and assigning names and pc’s to newly
created concepts:
This is done by considering the entire set of sub-corpi and various codings of
this entire corpus. In a code of an entire corpus, it is easy to assign optimum
pc’s to concepts. These pc’s are the observed probabilities of those concepts in
the various environments in which they occur.

Ideally these pc’s should be updated after each new sub-corpus is worked.
Practically, it may be better to update less frequently.

————————————————————————————

1.25.79 Rev (Levin) page 3

Heuristics: How the system finds them automatically (see 32.15–.35, 95.06,
also 36.01–37.01). In our corpus, we try to arrange it so that the search thresh-
olds for the various sub-corpi are ≈ equivalent. This could be done by having
all sc’s

[.04] the same length and all search thresholds, Ta the same. Possibly one
could

[.05] have Ta increase with sc length in a suitable manner if sc length did
vary. Another possibility is to allow the “equivalent.” Ta to vary over the sc’s,
but slowly change.

The idea here is that the pc’s of concepts and of Algms, depend on how
effective those abss are in prediction, subject to the constraint that the final use
of the algm constructed must have cc < Threshold. This automatically gives
high pc to abss that create or help create algms that (a) give high pc to sc’s,
(b) do this (a) with a cc that is < Threshold. These (a), (b) conditions are for a
fast device that is good for prediction. The speed of implementation condition
makes it a kind of “heuristic”. That the lengths of sc’s and the Ta’s be the
same, is necessary, so that information on concepts obtained from different sc’s
will be comparable.

Part of the heuristic concept is the TM2 concept. Here the machine (TM1)
is allowed to look at good codings of the entire corpus(≡ all sub-corpi) and tries

3

to find regularities in the construction of algms that have been most useful.
Any such regularities can be used to increase the pc of existing algms and their
sub–concepts. This operation is a TM2 function, but it can be performed by
TM1, if the “sc” code is regarded as “just another sc of TM1”. (A possible
difficulty is that this code will not, ordinarily, be of a length comparable to the
other sub-corpi — in which case see .04–.05 for an idea) . . .

[.25] Another important idea is that of “learning” as the search for a general
sc progresses. We try algm1 and it gets final sc pc of p1 We try algm2 and it gets
final sc pc of p2 and so on for algm3 . . . From this information we may be able to
get ideas for new algms that are more likely to have very high final sc pc — I.E.
we use the degree of success of algms 1, 2, 3 to modify the aprip (≡ pc) of the
subsequent algm trials. (36.01–37.01 discusses this idea some: 36.25–37.01 in
particular). This process is equivalent to a new algm, with (presumably) higher
δ total pc per δ cc than others — so we give this new algm high pc (≡ small
—q— for its description q). However this “learning” idea isn’t yet too clear in
my mind and I haven’t properly formalized it for analysis (See 78.01 for better
discussion of this: also 71.01–71.35 to some extent).

[.30] I conceive of this system as being part of a PMTM. (Partial Match-
ing Thinking Machine) I suspect that many of the concepts needed to develop
statistical predictors like linear regression will come from fields of “experience”
that are not included in the usual statistical sub-corpi — so ≡ PMTM is needed.
The ways in which these other modes of PMTM can be implemented using the
formalism of this note, have not been worked out — also how information is
transferred from one mode to another.

See 95.06 for discussion of “production” v.s. “search” heuristics.

————————————————————————————

1.25.79 Rev (Levin) page 4

General Discussion: the form of the prediction problem used seems adequate
(1.15). The idea of the sub-corpus not being merely “sequential” is important.
The search method using
pc of (algm) / (cc of algm’s evaluation of sc)
is very good and important. (2.01–.30) — It makes it possible to get good
results with short total search times.

That heuristics are automatically included in the formalism is important
(3.01–.40) — Though this part is a bit vague in my mind.

This system seems like it might take care of heuristics as well as prediction
without any special devices — looks like what I’ve been looking for for many
years!

Some Major Problems!
(1) Devising an initial set of concepts that are complete (≡universal) so that

all possible algms can be partially listed. (2.32) — also the concepts should give
good aprips to good algms.

(2) The stuff on how heuristics are automatically implemented (3.01–.40) is

4

not so clear and hasn’t been adequately analyzed or formalized. We definitely
want to make sure that all possible heuristics can be worked into the system.

(3) How to implement PMTM using the present formalism (3.30–3.40 is a
preliminary discussion). I’m not sure an actual PMTM is needed — but many
of the sc’s must be from fields superficially distant from the statistical prediction
sub-corpi.

(4) The ways in which, say, linear regression (in various of its forms) could
be discovered, and the training sequence needed has not been gone into at all
— this is related to (3). (3) and (4) also tie in with (1) somewhat, and also (5).

(5) The general problem of devising training sequences for this TM ((1), (3),
(4), are relevant).

(6) The problem of how Ta (or some other search parameter) must vary as
the sc length varies (3.01–.05). Possibly it is not the length of the corpus but it’s
final pc (function of [corpus length times redundancy of corpus]), that should
determine Ta? Perhaps the way information on a general concept derived from
different sc’s is combined, can use “weights” dependent on the respective sc
lengths.

(7) The IPC problem of how to construct real machines that will compute
solutions to these problems with minimum cc. It is likely that a factor of ≈ 1000
in speed up is possible. With technologically doubling of cc/$ every three years,
say, this factor of 1000 amounts to ≈ thirty years of hardware improvement!

(8) In Real World, the corpus is not broken down into sc’s of about equal
length. Just how can this system deal with Real World data? (79.01–.15 for
ideas on TM constucting its own training sequences from Real World data.)

————————————————————————————

1.25.79 Rev (Levin) page 5

This will cover Levin 79, 37.02–79.40. The main thing reviewed is 37.02–
54.40; then 71.01–79.40. 53.01–54.40 reviews 37.02–52.40, to some extent ; it is
on a pure induction machine; it is a sort of review of stuff up to that point.
75.01–.24 reviews much of 56.02–74.40. 76.01–.28 reviews also.

N.B. 46.01–47.40 discusses “hueristics”: also importance of using “historic”
information on cc and pc of algms that were actually used.

I’ll start with what I think is the major development since 37.01:
My present impression is that the device of Revision 1.01–4.40 may, indeed,

be an adequate “study problem”, in the sense that, very many problem types
can be expressed as either “NP problems” or “Gray NP problems”. [NP problem
is: U(α, x, .) is given: U is a umc. We have to find a y of length not much
> |x| 3 U(α, x, y) = 0.] α is the description of a fixed algm. x is some string
of arbitrary but finite length. The time to compute U(α, x, y) is comparable to
|x|. For a Gray NP problem, the conditions are similar but U(α, x, .) is a real
number and we want to find a y that

[.16] maximizes it, or gives a largest value in the cc available for the search.]
Finding a good induction code for a corpus, is a “Gray NP problem” (However,

5

see 6.02).
[.17] For TM1 = TMa, some of TM1’s problems will have to be, to both

(a) Get a good code for a corpus, (b) Get a sequence of highest probability
extrapolations of the corpus. Devising an algm to do this with an arbitrary
corpus is a (Def.) Gray NP problem (≡ GNP problem). See 50.18 for a

[.20] discussion of the problem and 50.37–.40, 52.01–.05 for what looks like
an adequate solution. However, problems like .17–20 are of the NP and GNP
type, so fine!

[.25] Note that for the NP problems defined by U(qi, αi, ·); we want to find an
algm description qi 3 y = U(qi, αi, xi) is a solution. I think this is a better way
than to try to find y = U(qi, xi), because in the U(q, α, x) problem, we want to
find a q that is relatively constant for all α’s; we want a general problem solving
technique that can look at both α and x and then try to find a solution. The
qi’s will then not change much with i (Important: This reduces search time,
since qi+1 will be a “short distance” from qi therefore the “δq” needed will be

small say < 10 bits. It is this 10 bits that occurs as m210 (Time to compute q
and test y).

[.30–Def.] Some important kinds of problems that are (G)NP [(G)NP = NP
or GNP] :

(1) Hill Climbing Problems — either direct search for optimum (history of
1) or History of a few or History of h � 1 − > [See 78.02–.12 for discussions]
< − So this includes sequential optimization problems — the hardest type of
scientific problem that I’ve thought about much. — In solving optimization, the
solution is an algm for making trials – the algm basing the trials on past trials’
success and is able to do exponents, because of the “averaging ” structure of
the GORC. Finding a solution to an (or a set of) equation(s) could be regarded
as a GNP problem. Each closer approximation is higher G. Usual hill climbing
methods need not be used — ordinary equation solutions methods can be used.

2) Finding a good Grammar for a corpus. [Note: Search for such a grammar
will, if done well, involve noting what trials in the past for this sci have worked
badly and well, and why they worked badly or well — so it could be a more
advanced type of search such as discussed in 78.02–.12.]

3) Finding Solutions to ordinary NP problems, like (a) find y 3 Axy = xi :
solve linear and non-linear equations in 1 or more unknowns; perhaps problems
in “Number Theory”, etc. An entire very interesting training sequence. could
be constructed from NP problems alone.

————————————————————————————

1.25.79 Rev (Levin) page 6

See Lev 53.01–54.50: this is a pure induction TM: It is a kind of Review of
the TM contemplated. ————————————————————————
————————–

6

[.02:5.16] [Side Note]: I’m not sure that GNP problems are so “naturally”
worked: Though it would seem that if one considers the problem to be that of
selecting an optimization algm, and “q” is the algm description, and T(q) is
the time needed to “test” algm q, then 2q0T(q) seconds are needed to find the
algm, q0. In the case of U(qi) being a optimization algm, testing time for each
trial, can be rather large. Also the test result is not White or Black, but Gray.
Finding induction codes is a Gray problem of this type.

See top of Page 5 of this review for list of partial reviews of the material of
interest: Read these reviews. Then, try to characterize my “New Approach” as
exactly as possible.

———————————————————————————–

(Brief) Important New Characterizations of Proposed Approach:
(1) Breakup of corpus into sub-corpi (≡ sc’s): this is so that: (a) Coding

of sc’s is easier because they are smaller. (Coding of the corpus as a whole is
much more difficult than the sum of coding the parts [≡ sc’s]). (b) One obtains
partial Feedback Faster.

(2) The “ordering” of the sc’s into a “training sequence”. This is so regular-
ities observed in earlier parts can be used to help code later parts.

[Without both (1) and (2) coding of large corpi is usually “TransCom-
putable”. (1) is possible without (2), but is not very good without (2): (2)
is not possible without (1) however.]

(3) In coding a sc, we do not try for the most general type of code, but rather
one of the form: [code of a cpm] _ [Probability codes of sc with respect to that
cpm]. Here, the codes of the cpm’s can be relatively short (say ≈ 10 bits, with
respect to codes used for the previous sub-corpi), even though the probability
of sc with respect to that cpm is very small. We can code the cpm by using a
single string. (Chaitin showed that

∑
pc of such finite objects is within constant

factor of 2−kcost) . . . The probabiity of the corpus with respect to the cpm can
be computed directly by the cpm (or occasionally by summation,

∑
2−kcost).

(See 98.01 for serious difficulties with this idea!).
Sc’s can be either induction problems, NP problems or a more general type

of optimization problem — providing they are solvable by a short code (10 bits
. . . or perhaps up to 20 bits — depending on amount of time needed to generate
the cpm (or whatever) and the time to check or evaluate the cpm (or whatever)).
[Total expected cc of search is <̃2q (cc of generating and checking an adequate
solution). However, note difficulties with, say, linear regression]

(4) cc/pc Search: This, in general, may not be an optimum search strategy,
but it may be acceptable/adequate. Later (see (5) ≡ 7.01) we can devise better
search strategies. (On non-optimality of cc/pc search: 72.01–.40 summarized
by 75.01.24).

————————————————————————————

1.25.79 Rev (Levin) page 7

7

(5) An understanding of how TM1 = TM2 is to be implemented: Just how
it is a generalization of the “total problem”; and what the “total problem” is.
How TM1 = TM2 may be improved — and just what it is “an approximation”
to. Criticism of simple cc/pc search. Suggestions for better forms of search that
can be practically implemented. Form of what may be the best possible search
strategy. [71.01–.40, 79.16–20; 77.01–79.15, 76.01–.28]

[.12] [Side Note] One thing that I am not at this moment clear about: The
details of just what TM does its cc/pc search on. Does it try to find (a) an
algmi(Xi) (where Xi is sci to be coded), whose output is a code of legitimate
probability of Xi, or

[.15] (b) An algmi 3 algmi (Xj) (where Xi is sci to be coded) has the proper
outputs for all j ≤ i. [See 8.01–.40 for what looks like an adequate model — it’s
“b”]. I think I analyzed this to some extent within the last week or two. 5.25
(of revision) discusses this a little. [date 3.25.79: the solution of (b) is that the
latest algmj (i is not necessarily changed for each sci) is our best bet for a TM1

at time j: algmj need not work well for the beginning of the corpus, since algmj

is a search algm, and the solutions to early part of the corpus have already been
found. algmj is more the “best bet” for a good search algm for the remaining
(or near) future of our corpus.].

(c) For NP problems: see 90.33 for what is probably an adequate approach
to NP (and)̃ problems. Say α(x, y) = 0 is the problem: Given α, x to find
y: we want algmi(αi, xi) that generates a good trial yi in a short time, or it
generates a solution yi in short time. Say algmi = U(Pi, ·, ·). Pi will have a
short description with respect to the set of previously acceptible Pjs. Again we
want algmi 3 algmi(αj , xj) solves all problems for j ≤ i. Testing these trial pis
can take much time, and various sampling methods could be used.

In .15 (b) we also have a similar condition, but by suitable sampling, we can
discard a trial algmi if the pc’s of the scjs tested thus far gives a total bcost >
acceptability threshold (sort of mindful of αiβ heuristic, in that one saves more
time with this trick if one happens to get good guesses early). What I can do,
is list the various possible kinds of probabilities, and training sequences, and
methods of treatment, — so I can criticize them and decide on the best ones.

However try reading on what I’ve written on these probabilities — I think
I’ve forgotten a lot.

[.30] Biblio on the probability of .12 : 43.28–45.40 (43.28–44.27 is on H.C.,
but relevant); 48.01–50.40; 52.01–52.40 (both somewhat “talky”); 53.01–54.40
is on pure induction machine; 71.01–71.40 − > 76.01–79.40 on sub-optimality of
the training sequence method; 72.01–72.40 − > 75.01–75.24 on sub-optimality
of the pc/cc search; 76.01–76.40 summarizes both of these.

77.14–77.40 Discusses and criticizes various possible forms of TM (pure in-
duction TM only).

Note: the machine of 77.14, also 53.01–54.40, is purely an induction machine:
it doesn’t do NP problems: superficially, the improvement and generalizations
of 78.01–79.40; (onto the machine of 77.14) are all toward pure induction. Is this
really true? Can I make good generalizations to work NP problems? Note: 90.33
ff really deals with the NP problems adequately; solving induction problems is

8

all I need to work on.
Auxiliary question: would the pure induction machine of Rev 1.01–4.40;

53.01–54.40 work? Narrowly relevant to the question of .12 is Rev. 5.25–5.30;
44.28 ff. Continues on page 8; Levin 88.01 ff may be that continuation however.
(Looks very likely).

————————————————————————————

1.25.79 Rev (Levin) page 8

Discussion of how picture has changed since Rev. 1.01–7.40. (the foregoing
is almost ≡ to 94.01–95.40 with exceptions noted on (94.20–94.40) R and (94.10–
94.12) R).

(0) See 97.01–97.40 for another brief discussion of the desired system.
(1) The corpus is as before, divided up into sci’s sequentially.
[.03] (2) Around 1.15 I had a different idea as to what M(q, sci) was:
[.04] Now I use algmj(sci, (b)) ≡ U(qj , sci, (b))− > P1,P2 . . . for sci, where

qj is a program to simulate Algmj and P1... is set of codes for sci and or
probability distribution. (See 96.04, 96.19–96.20, 96.25–96.28 for what (b) can
contain — also see .25 below (≡ (6)) algmj is the particular form of TM1 at
“time” j.

[.10] (3) sci can be either a short or long sequence. We do not confine
ourselves to codes of the form (description of cpmk) (description of sci with
respect to CPMk. See 98.01.

(4) Algmj can use any method of search. At first (small j), pure pc/cc search
will be used, using (b) data only (≡ apri to sci). Laater, as algmj is improved
(by TM2), we will use more general types of search using observations on sci to
direct the search.

(5) Initially, I will be TM2 and design various algmj ’s and improve them.
Since algmj can guide the search by looking at the whole sci, it can bias the
search — so I want to be careful of this when I am TM2 — One way to avoid
bias is to avoid using sci observations. [98.20–98.30], however, later, when
TM2 = TM1, there need not be any bias, since TMj ’s goal is to get good
predictions, and any bias would be against this goal.

[.25] (6) In 2.36 we considered updating pc’s of old concepts, naming new
concepts and assigning pc’s to them. This may all be automatically taken care
of by the argument (b). (b) includes any and all information that is apri to
sci, so it can be used to help code sci. (b) includes srtms, definitions and
concepts and their pc’s. It includes these for parallel codes of the previous sci’s
— these parallel codes are useful and contain various high pc/cc abss. Anything
associated with the previous sci’s is legitimate to put into (b), (which is ≡ a
library). But how to optimumly use the information in (b) is a Question! We
have to include various IR tricks to use (b). (b) also includes the raw uncoded
previous corpus.

(7) We will concern ourselves with induction problems only. NP problems
are a subclass of induction problems (as are all problems) and can be “included”

9

in the training sequence in this form. [90.33–91.13].
(8) Bibliog on improvements needed: 95.01 [Actually, by defining (b) prop-

erly: (See 8.04) this algmj becomes a potentially very non–el solution and over-
comes many objections!].

(9) Discussion of heuristics and how they are based on finite CB: 95.06–95.25
(also see Rev 9.10 on heuristics).

(10) The forgoing is ≈≡< 94.01− 95.40 > ; exceptions are noted on (94.10–
94.12 (R), 94.20–94.40 (R)).

(11) All of the subproblems of optimizing algmj [such as optimizing TM2

or finding best way to make observations in real world, or finding good set of
observations on sci, etc.] are regular “induction problems” and can be treated
by the usual methods.

————————————————————————————

1.25.79 Rev (Levin) page 9

12) The main methodological idea: if there is any problem — induction or
non–induction, write up the solution a human would find: describe the con-
cepts, strings, definitions needed for that solution. Next problem: devise a new
problem — 3 these abss, get large enough pc/cc so that they are within our
available

∑
cc. Next problem: devise new problems which ends up with abss

that give the abss needed in Problem2 high enough pc/cc, etc.
Essentially a “working backwards;” approach. This is alternative to trying to

devise a good set of primitive abss. and working up though a suitable training
sequence to get to difficult problems. It is possible to use both approaches,
however.

[.10] (13) Of theoretical interest and very important : On heuristics: 95.06–
95.25, 32.15–32.35; 31.01–37.01; 78.01 ff; 71.01–71.35. Many more references;

[.17] but an important problem is that of 40.25–40.30; 46.01–47.40. The
problem is that various abss have obtained various pc’s with respect to various
sci’s using various CB’s. (CB ≡ T0 < 2qTq). So how should one assign pc’s
to abss used with a particular CB — which can be different from the CBs that
those pc’s were obtained with?

40.25–40.30 was a “rough and dirty solution” for a certain kind of TM: I’m
not sure how relevant it is to the present TM.

One not bad approach is to express the pc of each abss as a function of CB,
so we can directly assign a pc for each possible CB level. While pc of a given
abss may not be monotonic in CB, (So this function can have a complicated
form), — due to pc’s of competing abss — it may be that the unnormalized
pc’s of various competing abss. can be approximated by monotonic functions
of CB.

10

