Two Letters on Ways to Solve Problems
Letter 1

Ray Solomonoff

Oxbridge Research

Mailing Address: P.O.B. 400404, Cambridge, Ma. 02140, U.S.A.
prettyvivo@gmail.com http://raysolomonoff.com

1. Try to define the problem clearly. Remove irrelevant parts of its descrip-
tion. If the problem is hard to define, make this definition be the new
“Top Goal”. If problem definition remains very difficult, ask “Do I really
want to solve this problem?” — Perhaps I shouldn’t be spending time on
it. Another possibility is that the problem itself is not well definable at all,
that it is meaningless — that it is part of a so—far unsuccessful attempt
to break a larger problem in well-defined parts. It might be best to go
back to the larger problem and try to break it into pieces in another way,
or simply try to solve it without breaking it up.

2. If it is an optimization problem (most problems *are*), make a clear state-
ment of what is to be optimized. Could the goal be defined if one had an
infinite amount of time and computer power to realize it? [I have found
this to be one of my strongest heuristics — if one is unable to do this then
it is strong indication that one doesn’t understand the problem)].

3. State the problem in clear, operational form. Again, inability to do this
is strong indication that you don’t understand the problem.

4. Devise “study problems” and try to solve them. A good “study problem”
is similar to the original problem. Solving it will suggest ideas, concepts,
useful for solving the original problem. Study problems might be analo-
gous to the original problem.

5. Express problem as an AND, OR network of problems. “Divide and Con-
quer” — means set of AND problems. “Equivalent problems” are OR
problems. A difficult problem can often be expressed as a Boolian net-
work of AND and OR problems. If there are N problems in the net, then
deciding which problem to work on next, takes an amount of time pro-
portional to N. In general, there may be several alternate ways to break
a problem into parts.



10.

11.

12.

13.

14.

15.

Guess at a solution, then try to prove it is correct or incorrect. Under-
standing why certain trial solutions failed can help find correct solutions.

Try specific numerical examples for more general problem. An approxi-
mate solution can give some insight on what general solution looks like.

Generalize the problem. This sometimes makes it easier to solve by getting
rid of inessential features.

Specialize the problem. Solving several special cases can give insight on
the general case.

Is the problem solvable? Try to prove that it is not. Is it possible to prove
that a solution exists? Is the problem solvable but requires too much
computation time?

Can the problem be expressed as a “Hill climbing problem”? If so, is the
topology smooth enough to make “steepest descent” feasible? Consider
less “greedy” methods. For many non—linear optimizations the Levenberg—
Marquardt method is very good.

Can the problem be configured as a GPS (General Problem Solver) prob-
lem — with a “Goodness of criterion” that is a vector — all components
of the vector have to be zero for a solution. When using Genetic Algo-
rithms to solve such problems, the fitness vector is usually converted to
a single scale. This loses the individuality of the original vector compo-
nents. Better to use a different mutation/crossover algorithm for each
component.

If the problem is well known and unsolved, try to reformulate it in novel
ways: Transform it into areas in which you have unusual expertise.

If you are a machine the idea of 1) “Defining the problem clearly” is not
useful. The problem has already been formalized and stripped of what
the user thinks are irrelevant data. This “irrelevant” information can be
very useful for problem solving. The “context” of a problem, (both local
context and extended context) should be included as auxiliary informa-
tion. They suggest methods of problem solving, through associations. If
this information is not given to the machine, it will have to build up this
information through its own experience — which can be very time con-
suming. The user should try to include as much auxiliary information as
possible.

Some time ago, you suggested that one might make interesting discoveries
by listing various physical effects and considering the Cartesian product
of several such lists. Each conjunction of effects could suggest an inven-
tion, practical application or scientific breakthrough. Zwicky developed
something like this in attempting to list all possible solutions to problems
and investigating all of them. Gunkel extended this idea by making many



lists of ideas. One problem with the Gunkel approach is that there are
too many possibilities to investigate. My idea is to associate a probability
with each list element (so total probability of each list is 1). Each element
of the Cartesian product, then has the product of the probabilities of its
elements. We can then search the “nodes” in order of these probability
products. Usually when people do Gunklish searches, they pick a few ele-
ments of high likelihood from each list, and combine them. This is a very
wasteful method of doing trials and is not nearly as good as trials in strict
probability order. Algorithmic Probability is a more general, more exact
way of doing these searches.



