Data Analysis Using Stein’s Estimator
and lts Generalizations

BRADLEY EFRON and CARL MORRIS*

n 1961, James and Stein exhibited an estimator of the mean of a multi-
variate norma! distribution having uniformly lower mean squared error
han the sample mean. This estimator is reviewed briefly in an
ampirical Bayes context. Steln's rule and its generalizations are then
ipplied to predict baseball averages, to estimate toxomosis prevalence
-ates, and to estimate the axact size of Pearson’s chi-square test with
-asults from a computer simulation. In each of thess examples, the
mean square error of thase rules is less than half that of the sample
mean,

1. INTRODUCTION

Charles Stein [15] showed that it is possible to make a
uniform improvement on the maximum likelihood esti-
mator (MLE) in terms of total squared error risk when
estimating several parameters from independent normal
observations. Later James and Stein [13] presented a
particularly simple estimator for which the improvement
was quite substantial near the origin, if there are more
than two parameters. This achievement leads immedi-
ately to a uniform, nontrivial improvement over the
least squares (Gauss-Markov) estimators for the param-
eters in the usual formulation of the linear model. One
might expeet a rush of applications of this powerful new
statistical weapon, but such has not been the case.
Resistance has formed along several lines:

t. Mistrust of the statistical interpretation of the mathematical
formulation leading to Stein's result, in particular the sum
of squared errors loss function; ’
Difficulties in adapting the James-Stein estimator to the
many special cases that invariably arise in practice;
. 3 Long familiarity with the generally good performance of the
MLE in applied problems;
© 4. A fedling that any gains possible from a “complicated” pro-
cedure Stein’s could not be worth the extra trouble.
(LW. Tukey at the 1972 American Statistical Association
meetings in Montreal stated that savinga would not be rore
e than ten percent in practical situations.)
. > D gends w MUCH on Sohuatien i)
% We have written a series of articles [5,6,7,8,9,10,11]
Etliat cover Points 1 and 2. Our purpose here, and in a
\ishg hier version of this report [12], is. to illustrate the
{ihethods suggested in these articles on three applied
‘problems and in that way deals with Points 3 and 4.
i@:nly one of the three problems, the toxoplasmosis date,
w1l “real” in the sense of being generated outside the
“thtistical world. The other two problems are contrived
gﬂlustmte in & realistic way the genuine difficulties and
I
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rewards of procedures like Stein’s. They have the added
advantage of having the true parameter values available
for comparison of methods. The examples chosen are the
first and only ones considered for this report, and the
favorable results typify our previous experience.
To review the James-Stein estimator in the simplest
setting, suppose that for given 6;
X6 e N@, ), i=1, k23, (LD
meaning the {X;} are independent and normally distrib-
uted with mean By X, = 6; and variance Vary, Xy =1
The example (1.1) typically occurs as a reduction to this
canonical form from more complicated situations, as
when X is 8 sample mean with known variance that is
taken to be unity through an appropriate scale trans-
formation. The unknown vector of means 6 = (6;, - - -, o)
is to be estimated with loss being the sum of squared

L - L]
component errors R1C
k

Lo, 8 = X (b: — 6%,

fml

where 8 = (B, ---, 0») is the estimate of 8. The MLE,

(1.2)

which is also the sample mean, 8(X) = X = (X, - -+, Xu)
has constant risk &, cawt
H P
RO =B YL (Xi— 03t =k,  (13)
$ml —

E, indicating expectation over the distribution (1.1).
James and Stein [13] introduced the estimator 81 (X)
= (Gll(x): Tty sli(x)) fork 2 3,

et b et
§2(X) =i+ (1 — (b — /) (Xi — pa)
i=1 .-,k (14)

with y = (s ---, ws)’ sny initial guess at & and
S =Y (X; — )% This estimator has risk

{30.T. )

R(9,%") = E, Z". (32X) — 0))? (1.6)

o)
B (k- 2)*
k=24 % (6 — )

being less than k for all 8, and if 6; = us for all 1 the risk
is two, comparing very favorably to k for the MLE.

<k <k, (16)
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The estimator (1.4) arises quite naturally in an em-
pirical Bayes context. If the {#;} themselves are a sample
from a prior distribution,

\’m.«- vare
ind «

'NN(}"‘sf)) t=1,--

then the Bayes estimate of 8; is the a posten'ori mean of

"k : (17)

8; given the data re : negPa 4+1“- lﬁ‘_) X
6‘(X) -EO‘IX ‘-ﬂ; %ﬁé‘ ® relun ;’;5 {

+ Q-0+ HNXi~p) . (18

In the empirical Bayes situation, +* is unknown, but it
can be estimated because marginally the [X;} are
independently normal with means {u;} and

S =T (X; — )~ 1+ xd

where X,? is the chi-square distribution with % degrees
of freedom. Since ¥ > 3, the unbiased estimate

Bk —-2)/S=1/1+ (1.10)
o Py imnen B (te-2/5> 2

is available, and substitution of (k — 2)/8 for the un-
known 1/(1 + %) in the Bayes estimate &* of (1.8)
results in the James-Stein rule (1.4). The risk of §!
averaged over both X and 8 is, from [6] or [8],

E.E,(BMX) — 8 =1—((k—-2)/kQQ+ 7,

(1.9)

(1.11)
‘E, denoting expectation over the distribution (1.7). The

/ risk (1.11) is to be compared to the corresponding risks

of 1 for the MLE and 1 — 1/(1 + 7®) for the Bayes

estimator. Thus, if % is moderate or large 8! is nearly as

C good as the Bayes estimator, but it_svoids the possible

gross errors of the Bayes estimator if 7 is misspecified.

It is clearly preferable to use min {1, (k — 2)/8} as

an estimate of 1/(1 + r*) instead of (1.10). This results
in the simple improvement

e il
B (K) = e+ Ak — 2/9XXe = w) (112)

with (@%/= rhax (0, @). That R(6, 84) < R(8, 5! for all
6 is proved in [2, 8 10, 17]). The risks R(6, &) and
R (8, ) are tabled in [117].

2, USING STEIN'S ESTIMATOR TO PREDICT
BATTING AVERAGES

The batting averages of 18 major league players
through their first 45 official at bats of the 1970 season
appear in Table 1. The problem is to predict each player’s
batting average over the remainder of the season using
only the data of Column (1) of Table 1. This sample was
chosen because we wanted between 30 and 50 at bats to
assure a satisfactory approximation of the binomial by
the normal distribution while leaving the bulk of at bats
to be estimated. We also wanted to include an unusually
good hitter (Clemente) to test the method with at least
one extreme parameter, a situation expected to be less
favorable to Stein’s estimator. Batting averages are
published weekly in the New York Times, and by April
26, 1970 Clemente had batted 45 times. Stein’s estimator

requires equal varua.nce:s,1 -ar-gh-
bats, so the remaining 17 players are all whom eithe
April 26 or May 3 New York Times reported with, L5

™ [ ars & Ar = Cave, byaray, -
‘T 01 Bawe boan W ) W
at bats. e e %

Let Y, be thebbattmg average o TMP“Tayer Hhi=1, ...
18 (k = 18) after n = 45 at bats. Assuming base
occur according to 2 binomial dxstnbutlon mth dés

mean, the arc-sin transformation for sta.bilizing
variance of a binomial distribution is used : X; = fius (3
§=1, ..., 18 with e

faly) = @1y

Then X; has nearly unit variancé? independent of i
The mean? §; of X is given approximately by 8: = fu(ps).
Values of X;, §; appear in Table 1. From the central limit,
theorem for the binomial distribution and continuity of
f» we have approximately

(n)taresin(2y — 1) .

X:|6:'N N9, 1), i=1,2---,

the situation described in Section 1.
We use Stein’s estimator (1.4), but we estimate tha

common unknown value s = S ui/k by X = % X./k)

k, (2.2)

shrinking all X; toward X, an idea suggested by Lindley ?
6, p. 285-7]. The resulting estimate of the tth com

Lmdl b&w [N £%
ponent 6; of 8 is therefore  Frowms "éi12 5Y, 08
(T3]

Laney
n{' b itk 4'1'. reand e & fferent.

BE)=X+0-G-3)/NX-X) @3

with V=Y (X;— X)*and with k — 3 =(k —1) - 2
as the appropriate constant since one parameter is esti-
mated. In the empirical Bayes case, the appropriateness
of (2.3) follows from estimating the Bayes rule (1.8) by
using the un}glased estuna.tes X for x and (k — 3)/V for
1/(1 + Pfrom the marginal distribution of X, analogous
to Section 1 (see also [6, Sec. 7). We may use the
Bayesian model for these data because (1.7) seems at
least roughly appropriate, although (2.3) also can be
justified by the non-Bayesian from the suspicion that
Y. (6: — 6)? is small, since the risk of (2.3), analogous to
(1.6), is bounded by

(k —3)*
k—3+ X (6:— 8
For our at;?\‘al; ggt‘imate of 1/(1 + ) is (k — 3)/V

r(‘)

R(6,3") <k— G=Y 0k . (2.4)

=.791 o 0.514, representing considerable a prior:
information. The value of X i8¢<3.275%0 3,365 s
P el e cerresb
30Xy = 8; = 791X + 209X, = .gQQX,- — 259 . (2.5)
~ay =i . T, L\TF"&]—
! The unegual vari case in d d in Section 3. H".‘L)& 7/75‘

o exact computer compuwtion showed that the standard devu.tlon of X¢is
within ,036 of unity for n = 45 for all pi between 0.15 and 0.85.
¢ For most of this discusalon we will regard the values of p¢ of Column 2, Table 1
and & aa tha g to be estimated, although we actually bave & prediction
problem bacsuu thess quantities are eatimates of the mean of Yi. Accounting for
thia fact would cause Stein's method to compare even more {avorably to the sample
roean becnuse the randomerror in pi increases the losses for all estimators equally.'
This increnses the errors of food estimators by a higher percentage than poorer ones.




=3 . ‘
ata Analysis Using Stein’s Estimator €D, -
e 1, 1970 Batting Averages for 18 Major League Piayers and Transformed Values X, 6; ‘&
Ei Y, = batting p = batting At bats Xo= 45‘5. P (;_?,.-Q \9; = 455- ged'(2 p.--\)
¥l average for average for for -
] Player first 45 remainder remainder X 0w »7
] at bats of season of season ‘-‘Kw‘. k‘:‘(.s“"
) o v.
| % (1) (2 (3 (4) () -
T Clemente (Pitts, NL) 400 v 348 367 -1.35 -2.10
32 F. Robinson (Balt, AL) 378 4 298 426 -1.66 -2.79
;%b 3 F. Howard (Wash, AL), 356 0 .276 521 -1.97 -3.11
P ¥4 Johnstone (Cal, AL) 333 ‘16.222 275 -2.28 -3.96
A Berry (Chi, AL) 3t 7 2713 418 -2.60 -3.17
| 7 8 Spencer (Cal, AL) 311 270 466 -2.60 -3.20
7 Kessinggr (Chl, NL} .289 - 12,263 586 -2.92 -332
8 L. Alvarado (Bos, AL) 267 ... . N 210 138 ~3.26 -4.15
9 Santo (Chi, NL) 2447 o .269 510 -3.60 -3.23
10 Swoboda (NY, NL) 244 442307 200 -3.60 -3.83
11 Unser (Wash, AL) 222 1y 264 277 -3.95 -3.30
12 wiiliams (Chi, AL) 222 > .256 270 -3.95 -3.43
U X Scott (Bos, AL) 222 . =303 435 -3.95 ~-2.71
,‘:‘ 14 Petrocelli (Bos, AL) 222 1y 264 538 ~-3.95 -3.30
L 16 E. Rodrlguez (KC, AL) 222 (¥ .226 1886 -3.95 -3.89
A8 16 Campaneris (Oak, AL} 200 . & &.285 558 -4.32 -2.98
17 Munson {NY, AL) 178 . 2.316 | 408 -4.70 -2.53
} Alvis (Mil, NL) 156 "19 200 swalssz 70 -5.10 -432
, I Sors BF 1n vde nm fen T Tl
The results are striking. The sample mean X has total tion of 6, the risk for estimating 6, by 5!, for example,
quared prediction error 2. (X:— 0. of 17.56, but can be as large as k/4 times as great as the risk of the
YX) = 1 X), - 3,1(X)) has total squared prediction MLE X. This phenomenon is discussed at length in
or of only 5.01. The efficiency of Stein’s rule relative [5, 6], where “limited translation estimators” 5 (X)
the MLE for these data is defined as T (X:—6)/ 0<Ls<lare introduced to reduce this effect. The MLE
s, (32 (X) — 6.)%, the ratio of squared error losses. The corresponds to 8 = 0, Stein’s estimator to s = 1. The
Ficiency of Stein’s rule is 3.50 (=17.56/5.01) in this estimate 3:(X) of 8; is defined to be as close as possible
xample. Moreover, 32 is closer than X; to & for 15 to 52(X) subject to the condition that it not differ from
Batters, being worse only for Batters 1, 10, 15. The X:by more than [(k — 1)(k — 3)/kV J*Ds-.(s) standard
gstimates (2.5) are retransformed in Table 2 to provide deviations of Xy Di_(s) being & constant taken from
Stimates p = S~ () of i [6, Table 1]. If s = 0.8, then Dur(s) = 0.786, 50 §03(X)
T tfin’s estimators achieve uniformly lower aggregate may differ from X: by no more than
&i¥rigk ‘than the MLE but permit caonsiderably increased
‘#drik to individusl components of the.vector 8. As a func- e 86-(17->-0-791718)1 = .68 .
T“? This modification reduces the maximum component
" 2. Batting Averages and Their Estimates risk of 4.60 for 53 to 1.52 for 3 while retaining 80
2 percent of the savings of Stein’s rule over the MLE. The
Batting  faximum F;g'::"s; Rot Aot ! retransformed values $¢ of the limited translation-- |
rm o rans- 8- : - 5 H .
or orage . likelhood  Stei's  form v ,:rg % estimates fu l(5_."’-"(}()) are given in the last column of
@5 remainder  estimate  estimator . 508, gos —=>Table 2, the estimates for the top three and bottom two -
pe Y, pi poa pos Patters being affected. Values for s = 0.9 are also given
= in Table 2. B
400 .290 334 351 | = i )
‘378 268 ts 429 C(Iie]?entef ¢ h‘l) was known _t,o bﬁ an exceth}ox.m_l}y@
"a58 281 ‘202 ‘a0 Bood hitter from s performance in-other years. Limiting .
_ 333 . 21 2 287  translation results in a much better estimate for him, 88 ) 3
i gn g;g -gg g;g we anticipated, since 3;'(X) differs from X; by an exw?;@"iéé e
% 289 "268 268 ‘o8g  Aive 1.56 standard deviations of X1, The limited trans-%a3 2
) : 267 ... .264 .264 264 lation_estimators are closer than the MLE for 16 of the e
26 244 259 259 259 18 batters, and the case 3 = 0.0 has better efficiency. for it ¥
; o 2% 28 28 (391) for these data relstive to ihe MLE than Stein's “7, i
; ~ 222 .254 254 ‘254 rule (3.50), but the rule with s = 0.8 has lower efficiency ’%" '{é
303 222 254 254 254  (301). The maximum compouent error occurs for = F A
b 222 254 254 254 . . . . vy
222 ‘254 254 254 Munson (¢ = 17) with all four estimators. The Bayesian
.200 249 .249 242 effect is so strong that this maximum error |87 — 611l ] 4
’1;2 2433 : ggg -%ﬁ decreased from 2,17 for s = 0, to 149 for s = 0.8, to “
. . : : 1.95 for 8 = 0.9 to 1.08 for s = 1. Limiting translation o
o 553 ‘ . ) ﬁ;‘. :

: ) L T
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therefore increases the worst error in this exa.mple, ]ust
opposite to the maximum risks.

3. A GENERALIZATION OF STEIN'S ESTIMATOR TO
UNEQUAL VARIANCES FOR ESTIMATING THE
PREVALENCE OF TOXOPLASMOSIS

One of the authors participated in a study of toxo-
plasmosis in El Salvador [14]. Sera obtained from a total
sample of 5,171 individuals of varying ages from 36 El
Salvador cities were analyzed by a Sabin-Feldman dye
test. From the data given in [14, Table 1], toxoplasmosis
.prevalence rates X for City ¢, < = 1, - .-, 36 were calcu-
lated. The prevalence rate X; has the form (observed
minus expected)/expected, with ‘“observed” being the
number of positives for City 7 and “‘expected” the number
of positives for the same city based on an indirect

. standardization of prevalence rates to the ageé distribution

of City <. The variances D; = Var (X;) are known from
binomial considerations and differ because of unegual

sample sizes.
These data X; together with the standard deviations

D} are given in Colymns 2 and 3 of Table 3. The preva-
Ience rates satisfy a linear constraint 3" d:X; = 0 with
known coefficients d; > 0. The means 8; = EX;, which

3. Estimates and Empirical Bayes Estimates of
Toxoplasmosis Prevalence Rates

"~ also satlsfy‘“z d.ﬂ“ 20

i X, s Jol 3(X) At kv er
1 203 <O 035 0120 334D 882
2 214 039 192 0108 219 102
3 185 047 158 0109 244 143
4 152 115 075  .0115 802  .509
5 138 081 092 0112 430  .338
6 128 061 100 .0110 304 221
7 113 061 088 0110 304 221
8 098 087 062 0113 480 370
9 093 049 078  .0108 251  .154

10 079 041 070 0108 225 112
11 063 071 045 0119 380 279
12 052 048 044 0109 248 148
13 035 056 028  .0110 280  .192
14 027 040 024 0108 22 107

15 024 049 020 0109 251  .154

16 024 039 022 .0108 219 .102

17 014 043 012 0109 231 122

18 004 085 003 L0112 462 359

19  -016 128  -007 .0116 1015  .564

20 -.028 .09 -017 0113 516  .392
21 -.034 073  -024 0111 373 291
22 -.040 049  -034 0109 251 154
23 -.055 058 -.044 0110 289 204
24 —.083 070 ~.060 0111 35.4 273
25  -098 088 -072  .0111 342 262
26  -.100 049  -.085  .0109 251 154
27 -112 059  -089  .0110 294 210
28 -138 063  ~.106  .0110 314 233
28 —156 077  -.107  .0112 400 314
30 -89 073 120 0111 373  .201
31 -.241 106 -.128 0114 680  .468
32 -294  J79>  -083 0118 <2433y .719
3  —206 .084 -225 011N 319 288
g ~824 152 -114 0117 1548 647

-897 158 -.1383 0117 1715 665
36  -.665 26) -140 0119 <A%PH 789

{X:}. Sincé the { X} were constructed -as
pendent random variables, they are approxlma.
normal; and except for the one linear constraint on ths:s
k=236 va.lues of X, they are independent. For sxmphclt ;
we will ignore the slight improvement in the independendg’
approximationr that would resylt from applying g
methods to an appropriate 35-dimensional subspace &
assume that the [ X} have the dlstnbutxon of the foll
ing paragra.ph

To obtain an appropriate empmcal Bayes est.:ma.t.l i
rule for these data we assume that

' (9
ind

KCL%A«N(&,D), i=1,-k

mapaing Ny e A ?
0.'"CN@©,4), i=1---k, (3.2)

A being an unknown constant. These assumptions are 22
the same as (1.1), (1.7), which lead to the James-Stein %
estimator if D; = D, for all 1, 7. Notice that the choice
of a priori mean zero for the 6, is particularly appropriate
here because the constant }_ d:6: = 0 forces the param-
eters to be centered near the origin.

We require & > 3 in the following derivations. Define

(3.1).
and

Lt

wopr€

Bi=Di/(A+ D) . > 7] A (8.3) %
Then (3.1) and (3.2} are equivalent to i!
0:| X'~ N((1 — B)X;, Difl — .~)),
Nt
Men e t=1--,k. (34)

For squared error loss' the Bayes estimator is the a
posteriort mean

3*(X) = Eg;|X: = (1 — B)X,: , (3.5)
with Bayes risk Var (6:}X;) = (1 — B;)D; being less

than the risk D; of §; = X,.
Here, A is unknown, but the MLE 4 of 4 on the basis

of the data S; = X2~ (A +D)x? j=1,2 - k
is the solution to
k k
A =X (8 — DH(A)/ T I(4) (3.6)
jm1 j=l

with
I;(4) = 1/Var (8;)) = 1/[2(A + Dy)*]  (8.7)
being the Fisher information for A in 8;. We could use
A from (3.6) to define the empirical Bayes estimator of
6:as (1 — D/(A + D))X.. However, this rule does not
reduce to Stein’s when all D; are equal, and we instead
use a minor variant of this estimator derived in [8]
which does reduce to Stein’s. The variant rule estimates
a different value A, for each city (see Table 3). The
difference between the rules is minor in this case, but it
might be important if ¥ were smaller.
Qur estimates 3:(X) of the §; are given in the fourth

column of Table 3 and are compared with the unbiased

4.0r for any other inoreasing funotion of {& — &/, £




Data Analysis Using Stein’s Estimator

estimate X in Figure A. Figure A illustrates the “pull in”
effect of 8:(X), which is most pronounced for Cities 1,
32, 34, 35, and 36. Under the empirical Bayes model, the
major explanation for the large | X} for these cities is
large D; rather than large |6:]. This figure also shows
that the rankings of the cities on the basis of §:(X) differs

from that based on the X an interesting feature that
does not arise when the X; have equal variances.’

A. Estimates of Toxoplasmosis Prevalence Rates

Originol estimare X,
2 &
3 35 4% 1 A N 75432 1

Empirical Bayes

Estimate 8; ()]\

—+ —t—t { 3iX
0% -5 4 -3 -2 -a 0 123 X

The values 4, ki, and B.(S) defined in [8] are given
in the last _three columns. of Table3. The value 4 of
(3.6) is 4 = 0.0122 with standard deviation o(A) esti-
mated as 0.0041 (f 4 = 0.0122) by the Cramér-Rao
lower bound on o(4). The preferred estimates A are all
close to but slightly smaller than A, and their estimated
standard deviations vary from 0.00358 for the cities with
the smallest D; to 0.00404 for the city with the largest D:.

The likelihood function of the data plotted as a func-
tion of A (on & log scale) is given in Figures B and C as
LikeLigoop. The curves are normalized to have unit
area as a function of o = log A. The maximum value
of this function of « is at & = log (4) = log (0122}
8 = —4.40 = p.. The curves are almost perfectly normal
2% with meéan & = —4.40 and standard deviation o, = .371.
The likely values of A therefore correspond to a «
differing from s by no more than three standard devi-
ations, |@a—pa| <304, OF equivalently, 0040< 4 <.0372.

In the region of likely values of A, Figure B also graphs

two risks: BAYES RISK and EB RISK (for empirical Bayes

£

t B, Likelihood Function of A and Aggregate Operating
Characteristics of Estimates as a Function of A,
Conditional on Observed Toxoplasmosis Data

- P(EB CLOSER) / \

BAYES RISK

/LIKELIHOOD on a confidence interval for Y 82/k.

315

risk), each conditional on the data X. EB Risk® is the
conditional risk of the empirical Bayes rule defined (with

Do = (1/k) Tie1 D) 8s

1 k
Ey— 5 (6:(X) — 62X, (8.8)
0 im0
and BAYES RISK 18
1 ¢ A 2
Bi— L X.—-8:) X 3.9
AkDoE(A"FD{ )‘ ®.9)

Since 4 is not known, BAYES RISK yields only a lower
envelope for empirical Bayes estimators, agreeing with
gB risK at A = .0122. Table 4 gives values to supplement
Figure B. Not graphed because it is too large to fit in
Figure B is MLE RISK, the conditional risk of the MLE,
defined as

k
BT (X 01X . (3.10)

:Do im1
MLE RISE exceeds EB RISK by factors varying from 7
%o 2 in the region of likely values of 4, as shown in Table
4. gB RISK tends to increase and MLE RISK to decrease as
A increases, these values crossing at 4 = .0650, about
4} standard deviations above the mean of the distribution

of A.

4. Conditional Risks for Different Values of A

A
Risk
0040 0122 .0372 0650 o«
EB RISK 35 .39 76 1.08 2.50
MLE RISK 2.51 1.87 1.27 1.08 1.00
P(EB CLOSER) 1.00 1.00 .82 .50 .04

The remaining curve in Figure B graphs the probability
that the empirical Bayes estimator is closer to 6 than the
MLE X, conditional on the data X. It is defined as

PALE (8:(X) — 09° < T (X — 02 X] . (.11

This curve, denoted P(EB cLosER), decreases as A
increases but is always very close to unity in the region
of likely values of A. 1t reaches one-half at about 41
standard deviations from the mean of the likelihood
function and then decreases as 4 —»® 10 its asymptotic
value .04 (see Table 4). )

The data suggest that almost certainly A is in the
interval .004 < 4 < .037, and for all such values of 4,
Figure B and Table 4 indicate that the numbers 3:(X)
are much better estimators of the 6; than are the Xi.
Non-Bayesian versions of these statements may be based

Figure A illustrates that the MLE and the empirical

Bayes estimators order the {6;] differently. Define the -

1 \ ) 1 1
“0040 .0058 .0084 0122 .0V77 025 .0372
A (log scale)

SRR ot

fritd ,
GRS

3 In (3.8) the & (X) are fixed numbers—those given in Table 3. The expectstion
is over the a posisrior distribution (3.4) of the d:.

B
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correlation of an estimator & of 6 by
r(®,0) = T8/ (L 825 o)t

a8 a measure of how well § orders 8. We denote
P(rEB » pMLE) g5 the probability that the empirical
Bayes estimate  orders 6 better than X, i.e., as

Puir(s,0) > r(X, 0)|X} . (3.13)

- The graph of (3.13) given in Figure C shows that
o P(rBB > ¢MLE) 5 5 for 4 < .0372. The value at 4 = o
irss,  drops to .046.

(3.12)

C. Likelihood Function of A and Individual and
Ordering Characteristics of Estimates as a
Function of A, Conditional on Observed
Toxoplasmosts Data

P(6,>8,)

08

LIKELIHOOD

0.4

0.2

i, r -3 *
Although our beliefs were substaxif.i %2 41
this instance did not always favor our pet methods.

The simulation was conducted to estimate the exact
size of Pearson’s chi-square test. Let ¥, and Y, be
independent binomial random variables, Y; ~ bin (m, p),
Y; ~ bin (m, p") s0 EY, = mp',, EYy = mp". Pearson.
advocated the statistic and critical region ;

B 2m(Yy — V,)*
- Y14+ Y)@m — ¥y~ ¥,)

to test the composite null hypothesis™H,: ' = p™* agmnsffg
all alternatives for the nominal size a = 0.05. The value’
3.84 is the 95th percentile of the chi-square distribution
with one degree of freedom, which approximates that of
T when m is large.

The true size of the test under H, is defined as

a(p,m) = P(T > 3.84|p,m) , (4.2)

which depends on both m and the unknown value
p = p’ = p”. The simulation was conducted for p =05
and the & = 17 values of m with m;=7+43 j=1,
++y k. The & values of o; = a(0.5, m;) were to be
estimated. For each j we simulated (4.1) n = 500 times
on a computer and recorded Z; as the proportion of
times H, was rejected. The data appear in Table 5. Since
nZ; ~ bin (n, a;) independently, Z; is the unbiased and
maximum likelihood estimator usually chosen® to esti-
mate aj.

>384 (4173

5. Maximum Likelihood Estimates and
True Values for p = 0.5

1 1 ] 1 d
.0040 .0058 0084 .0122 0177 .025 .0372
A(log scale)

Although X, > X,, the empirical Bayes estimator for
City 2 is larger, 8:(X) > 3,(X). This is because D, > D,,
indicating that X, is large under the empirical Bayes

.. model because of randomness while X, is large because
" 6, is large. The other curve in Figure C is

Py(8, > 6,|X) (3.14)

and shows that 8, > ¢, is quite probable for likely values
of A. This probability declines as A —», being .50 at
A = .24 (eight standard deviations above the mean)
and 40 at 4 =, '

4. USING STEIN'S ESTIMATOR TO IMPROVE THE
RESULTS OF A COMPUTER SIMULATION

A Monte Carlo experiment is given here in which
several forms of Stein’s method all double the experi-
mental precision of the classical estimator. The example
is realistic in that the normality and variance assumptions
are approximations to the true situation.

We chose to investigate Pearson’s chi-square statistic
for its independent interest and selected the particular
parameters (m < 24) from our prior belief that empirical
Bayes methods would be effective for these situations.

MLE True values
i m; Z a,
1 8 .082 07681
2 9 042 05011
3 10 .046 04219
4 11 .040 05279
5 12 054 .08403
6 13 .084 .07556
7 14 .038 04102
8 15 .036 .04559
9 16 040 05151
10 17 .050 05766
11 18 078 .06527
12 19 .030 .05306
13 20 .036 04263
14 21 060 .04588
15 22 .052 04896
16 23 .046 05417
17 24 .054 .05950

Under H, the standard deviation of Z; is approxi-
mately o = {(.05)(.95)/500}% = .009747. The variables
X; = (Z; — .05)/c have expectations

0, = EX,' = (a; - -05)/0‘

¢ We ignore s extensive bibliography of other methods for improving computar

simulationa. Empirical Bayes methods can be applied almultaneously with other
mothods, and if better estimates of ay than Z; were available then the empirical
Bayes methoda could instead ba applied to them. But for eimplicity we take 2z,
{tsel! as the quantity to be improved.

4 -



Data Analysis Using Stein’s Estimator

¥nd approximately the distribution

ind

X;16; ~ N(6; 1),

described in earlier sections.

The average value Z = .051 of the 17 points supports
the choice of the “natural origin” & = .05. Stein’s rule
(1.4) applied to the transformed data (4.3) and then
retransformed according to &; = .05 + of; yields

& ={1-—B2;+ 058, B=.32,
where B = (k¢ — 2)/S and

j=1,2--,17=k, (43)

(4.4)

17
S= Y (Z; — .05)%/q? = 46.15 .
1
All 17 true values «; were obtained exactly through a

separate computer program and appear in Figure D
and Table 5, so the loss function, taken to be the nor-
malized sum of squared errors X (& — aj)?/¢? can be
evaluated.” The MLE has loss 18.9, Stein’s estimate
(4.4) has loss 10.2, and the constant estimator, which
always estimates a; as .05, has loss 23.4. Stein’s rule
therefore dominates both extremes between which it
compromises.
« Figure D displays the maximum likelihood estimates,
Btein estimates, and true values. The true values show
a surprising periodicity, which would frustrate attempts
at improving the MLE by smoothing.

D. MLE, Stein Estimates, and True Values for p=0.5
gl
X

<,
pt

.'i 0,10
3 X Maximum likelihood estimator Zy;
0.09 © Stein's estimator a“
& True values ay; {lined)
W x 3
fir.
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4y 4“ o X
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tion a(p, m) = .05 improves as m increases, which sug-
< REébts dividing the data into two groups, say 8 < m < 16

317

tion of A;* = X571 (g, — .05)?/90? may be much larger
than A, the expectation of A:* = Y0 (@5 — 05)2/86%,
or equivalently that the pull-in factor B, = 1/(0 + Ay)
for Group 1 really should be smaller than B, = 1/(1 + As)
for Group 2.

The combined estimator (4.4), having B, = B, is
repeated in the second row of Table 6 with loss com-
ponents for each group. The simplest way to utilize
separate estimates of By and B; is to apply two separate
Stein rules, as shown in the third row of the table.

6. Values of B and Losses for Data Separated into
Two Groups, Various Estimation Rules

8=sm 17sm
Rule =16 Group 1 =24 Group 2 Total
8, loss 8, loss Joss
Maximum Likellhood
Estimator .000 73 000 11.6 18.9
Stein's rule,
combined data 325 4.2 325 8.0 10.2
Separate Stein rules 232 4.5 3re 54 2.8
Separate Stein rules,
bigger constant 276 43 460 4.6 8.9
All estimates at .05 1.000 18.3 1.000 5.1 234

In [8, Sec. 5] we suggest using the bolder estimate

9

Bi= (ki — 66)/8:, Si= T (Z;— .06)*/¢*,

j=1

SEES'—'SI) k1=9, k: = 8.

The constant k; — .66 is preferred because it accounts
for the fact that the positive part (1.12) will be used,
whereas the usual choice k; — 2 does not. The fourth
row of Table 6 shows the effectiveness of this choice.

The estimate of .05, which is nearly the mean of the
17 values, is included in the last row of the table to show
that the Stein rules substantially improve the two ex-
tremes between which they compromise.

The actual values are

9
Ay = ¥ (a; — .05)*/90% = 2.036
el
for Group 1 and
17
A* = 3 (a; — .05)%/80% = 635 ,
je10
so Bf* = 1/(1 + 4,* = .329 and B,* = 1/(1 + A%
= .612. The true values of B;* and B,* are somewhat
different, as estimates for separate Stein rules suggest.
“Rules with B, and B near these true values will ordinarily
perform better for data simulated from these parameters
p=05m=8,---, 24

5. CONCLUSIONS

In the baseball, toxoplasmosis, and computer simu-
lation examples, Stein’s estimator and its generalizations
increased efficiencies relative to the MLE by about 350
percent, 200 percent, and 100 percent. These examples

5 o~
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~ were chosen because we expected empirical Bayes

methods to work well for them and because their efhi-
ciencies could be determined. But we are aware of other
successful applications to real data® and have suppressed
no negative results. Although blind application of these
methods would gain little in most instances, the statis-
tician who uses them sensibly and selectively can expect
major improvements.

Even when they do not significantly increase efficiency,
there is little penalty for using the rules discussed here
because they cannot give larger total mean squared error
than the MLE and because the limited translation
modification protects individual components. As several
authors have noted, these rules are also robust to the
assumption of the normal distribution, because their
operating characteristics depend primarily on the means

"and variances of the sampling distributions and of the

unknown parameters. Nor is the sum of squared error
criterion especially important. This robustness is borne
out by the experience in this article since the sampling
distributions were actually binomial rather than normal.
The rules not only worked well in the aggregate here, but
for most components the empirical Bayes estimators
ranged from slightly to substantially better than the
MLE, with no substantial errors in the other direction.

Tukey’s comment, that empirical Bayes henefits are
unappreciable (Section- 1), actually was directed at a
method of D.V. Lindley. Lindley’s rules, though more
formally Bayesian, are similar to ours in that they are
designed to pick up the same intercomponent information
in possibly related estimation problems. We have not
done justice here to the many other contributors to
multiparameter estimation, but refer the reader to the
lengthy bibliography in [12]. We have instead concen-
trated on Stein’s rule and its generalizations to illustrate
the power of the empirical Bayes theory, because the
main gains are derived by recognizing the applicability
of the theory, with lesser benefit attributable to the
particular method used. Nevertheless, we hope other
authors will compare their methods with ours on these
or other data.

The rules of this article are neither Bayes nor admis-
sible, so they can be uniformly beaten (but not by much ;
see [8, Sec. . There are several published, admissible,
minimax rules which also would do well on the baseball
data, although probably not much better than the rule
used there, for none yet given is known to dominate
Stein’s rule with the positive part modification. For
applications, we recommend the combination of sim-
plicity, generalizability, efficiency, and robustness found
in the estimators presented here.

The most favorable situation for these estimators
occurs when the statistician wants to estimate the
parameters of a linear model that are known to lie in a
high _dimensional parameter space H,, but he suspects

that they may lie close to a specified lower dimensional

every parameter vector in H , may have large varia A
while estimates restricted to Hy have smaller vananee
but possibly large bias, The statistician need not choose
between these extremes but can instead view them sas
endpoints on a continuum and use the data to determine
the compromise (usually a smooth function of ‘the
likelihood ratio statistic for testing H; versus H,) between
bias and variance through an appropriate empirical,
Bayes rule, perhaps Stein’s or one of the generahzatlons

presented here.

We believe many applications embody these feattﬁé’s:!
and that most data analysts will have good experiences
with the sensible use of the rules discussed here. In view
of their potential, we believe empirical Bayes methods
are among the most under utilized in applied data
analysis.

[Recetved October 1978. Revised February 1975.]
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GRACE M. CARTER and JOHN E. ROLPH*

An empirical Bayes approach is used to derive a Stein-type estimator problems for which our approach is

of a multivariate normal mean when the components have unequal

variances. This estimator is applied to estimating the probability that 1. Estimating an average demographic chars

a fire alarm reported from a particular street box signals a structural family income by city block where the data cDpSisg
A fire rather than a false atarm or other emergency. The approach, is to geographically stratified sample by block of fsmhy.- :
k group alarm boxes into relatively homogeneous neighborhoods and 2. Estimating the average amount of garbage per &

3 to make empirical Bayes estimates of the “probability structural” for from & one week complete tally of garbage 3("‘3“1“

by each box in the neighborhood from yearly (1967-1969) Bronx data. A block, to determine how frequently collections sho
;5 N dispatching rule based on the estimates is evaluated on 1970 data. made for each block;

s - 3. Estimating the needs for emergency medical care b
44 5 2 tract so that the ambulances may. be located fo%h
- - 1. INTRODUCTION AND SUMMARY response time; %
o . 4. Estimating the probability that a fire alarm repo
R A In this article we use an empirical Bayes approach a street box signals a structursl fire as & functiot

‘ to generalize the usual J ames-Stein estimator [6] so location of the alarm box from several years of da
ikt that it can be used in a class of spatial analysis prob- each alarm box. Theso estimates can be used to decids

8 Jems. We then present an application of our procedure "’V“mber of fire companies to dispateh to & partioular
Ak . . . . o describe this application in Section 3. ¢
15 oy to the problem of estimating spatially varying fire alarm : Iy
' In Section 2, we use an empirical Bayes appro

SN probabilities. 0
derive estimators appropriate to estimating 6(4y, {1)

!,;i* 8 The problem addressed here is estimating & parameter ; ) v, Vi)
<. 8(4y, £2) which varies as a function of its location co- in Section 3 we apply these estimators to estimatis
r ordinates (¢, £). A sample X (6, &) from each location alarm probabilities in New York City.
H i is available for estimating ({1, ¢;). One possibility is B
18 fz“ using only the data from location (£, {2) to estimate the 2. EMPIRICAL BAYES ESTIMATORS :
; L: corresponding @ so that We begin by assuming that the area in questions
* 3 been broken into neighborhoods having at least:y
% 8(Ly, € = fIX (6, )] . . . . . es ;
ip . (6, ) = fIX (6 &) distinct locations each. Focusing on one neighborhnd
o & One can frequently improve on this approach if the Wwith' & locations, suppose the observations X;
k. values of 6({y, £=) tend to be close to one another for location % are of the form L tumi, P & T 5 whee g
i .. nearby locations. For the approach taken here, we assume W ossz-ok Koo
i" . that the s tend to vary reasonably smoothly over X~ N@O,D) i=1-""k
cography. Further, there is tural { ti . ‘
'J : ! geogTapty rther, there is & natural way o creating (meaning that the {X ;} are independent, normallys

Lad

small groups or neighborhoods of 4 to 40 locations each . . . v

. in which the 8's are more homogeneous than in the whole t'rilbut? with mean .EX‘ = 9;. anc.l }mwn v&;}&a;:e;:gk

R space. In each neighborhood we develop empirical Bayes The o ject is to estimate 6; for @ =1, «*-, k. 7€ give
estimates of 8(4y, {») which are weighted averages of an estimators of 6; herfz and defer making the-connectlo.n
estimate based on X (4, ¢») and an estimate based on between the preceding model and the spatial analysss
the average value of the X’s in the neighborhood. prob.lem of estimating fire alarm probabilities uathl
Examples of problems where this approach is ap- Se;tm:hg ' . \ <ical B roach
plicable occur when the area considered is a large city. n xsl_s ec 1;)1n e ;bi an egxtpl_mca ; ayes al.)]p d
Frequently, enough is known about how 6 varies with g(;;)glin?zat:ec:tifn::il:xg eazzest-hee:)zezz c;;ﬁzt(t);oli:ieil’ ’ﬁm
locati that ) WEDINS T T e
ation so that an analyst knowledgeable about the usual maximum likelihood estimator for 6 = (0, -+ 188

2,
s a1 PN
. o s

»

L N
23

e

&

t3
3 3 M
. city can construct reasonably homogeneous neighbor- . & T
i hoods § : y & 15 neig is & = X where X = (X4, + Xy). In the situation
28 I oods from looking at a map. A representative listing of - _
wherec the variances are equal and known (D; = D), the
d &% positive part version of the J ames-Stein estimator whith
R * Grace M. Carter is policy analyst, Information Sciences Department, and Joho
g 5 E. Rolph is research statistician, Economics Department, both with the Rand 5.,?;{.:
& A SST Gosporation, 1700 Main St., Santa Monica, Calif. 90406. This work was supported © Journal of the American Statistical AsSoC$vee
g L by & contract between the Fire Department of Now York City and the New York \.* December 1974, Volume 63, Num
Py & City Rand Institute. Applications Sepie
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irinks the observed values toward their mean is ap-
priate and is given by

[1 - BX)]X + B(X)Xe , (2.1)

Vi *"where 2=Q/) X, e=(,---,1) and B(X) =
;}ﬁm [1, G — 3)D/S] with § = 5 (X, — ). Eiron and
[ "“Morris [4, 6] have shown that this type of estimator has
. desirable properties either with or without the assumption
of & prior distribution for the 8.’s.
When the loss function is squared error and the
. significance level is not too small, Sclove, Morris and
Radhakrishnan [87] show that (2.1) uniformly dominates
the commonly used ‘‘testimator’”’ procedure of first

testing the hypothesis that 8; = 8, = - - - = 6, and then
-using X; or X to estimate 6;, depending on the outcome
., of the test.

’ 3’; We now give a generalization of the James-Stein
sestimator in the empirical Bayes context for use when
$ithe D,'s are not equal. This is necessary because in our
} *% phcatlon as well as many others, the X’s do not have
srequal variances. We wish to estimate the mean of each
ﬁg} % distributions given a sufficient statistic (think of it
5.:' 48 one observation), from each. The observations
§3§ X:;1 =1, - - -, k} are independent, normally distributed
£ 2Yith unknown means 8; and known variances D;. For
"}. me applications, it will be useful to derive the estimates
or prior distributions of the ; of the form:

ind

0 ~ N(V, PfA) (2 2)

ﬂect t.he degree he wishes 8; to be estimated by X, as
pposed to ». Thus,

X;~ N(v,D; + p:A) (2.3)

0:|X;~ N[(1 — B)X:+ B, D:(1 — By)] (2.4)

= D/(p;A + D;). Thus, the Bayes estimate
B)X: + Bw. To get an empirical Bayes

Es mate, suppose & = (a1, *-+, aw), ¥ = {v1, <=+, V&)
d Y 4: = 1. Define
v) = Zt-xas[X.‘“ X X(y) = Z:—l ¢

: '“f ‘(“a )] = Z:—x [(p:d + Dia; — 2(p:A + D)asy:

+aiTi(sd + DYl . (25)

from (2. 5) it is clear that for a; = 1 and v; = 1/k,
(@, v) = Xf.; (X; — X)? is an unbiased estimator of
— 1)(4 + D) where D = (1/k) 3 D:. The minimum
iance unbiased estimator of (k — 1)(4 + D) is
(o4, v4) where aai = (A + D)/(p:4d + D) and va s
@a,if (C¥uy aa.:). Using (2.3) we see that

S(aa, va) ~ (A + D)} _, ,

a2 e .
eg;t;;;“‘{{*:@’n ot
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where XZ_, is a chi-square variable with & — 1 degrees of
freedom. Since A is unknown, we estimate 4, and thus «
and v, from the data by defining 4 to be the solution to
the equation

S(az, vs) = (k — 1)(4 + D) (2.6)

if the solution is positive and 4 = 0 otherwisc. A method
for computing 4 is given in the appendix.

Letting S = S(a4, v4), anestimateof B = D/(A + D)
is (k — 8)D/S. Thus, from the definition of B;, the
appropriate positive part cstimator of B; is

o= min (1, P20
oS + (6~ 3)(Di — pD)

and

= (1 - B)X:i+ BX(vd) . 2.7
The rationale for using X(yi) is that X(y.) is the

minimum variance unbiased estimator of ». As before, if

D; = D, our estimator is the usual empirical Bayes
estimator given by (2.1) no matter what value 4 takes.

The constant prior estimator occurs when p; = 1, so
that the appropriate positive part estimator of B; is

B~=rnin( (k — 3)D; )
' 'S+ (k — 3)(D: — D)

The proportional prior estimator oceurs when p; « D..
Here the prior uncertainty on 8; is proportional to the
amount of information on 8; which the observations will
yield. The Bayes estimators for this choice of p reduce to
using B; = D;/(D:A + D:) = (1 + A)~". Since for any
value of 4, as,i = (AD + D)/(AD; + D;) = D/D;, the
estimator becomes

f: = (1 — B)X: + BX (v0)

(2.8)

where
B = min[1, (k — 3)D/8 (o, v0)] . (2.9)

The proportional prior estimator can also be derived by
applying the appropriate equal variance empirical Bayes
estimator to the transformed X’s, X,/ vVD; and noting
the E(X:/VD:) = »/¥D.

3. APPLICATION: ESTIMATING THE PROBABILITY
THAT AN ALARM SIGNALS A
STRUCTURAL FIRE

An estimate of the probability of a particular alarm
being a serious fire is useful for making an initial dispatch
decision for a fire alarm reported by a street box. If this
probability is high, more equipment should be dispatched
than when it is low. For our purposes, serious fires are
defined as fires in structures. We have used data from the
borough of the Bronx in New York and used empirical
Bayes methods to estimate the probability that a box-
reported alarm signals a structural fire given the alarm
box location. To evaluate our techniques, we used data

from 1967-9 to develop estimates for 1970 box-reported .
alarms and then compared our predictions with actual




loss function.

The obvious estimate of the conditional probability
*" that a particular box-reported alarm signals a structural
ﬁre is the proportion of box-reported alarms in the past
‘séveral years at that location that were structural fires.
%f “location”means alarm box, insufficient data are a

“problem, since at a given box there are some five to 40
s+ alarms per year, of which about 15 percent are for
structural fires. Using “location” to mean a neighborhood
ontaining a sufficient number of boxes may solve the
nple size problem, but can be inaccurate if boxes in
he same neighborhood have different conditional prob-
abilities that the box-reported alarms indicate structural
fires. We use the empirical Bayes estimates developed
in Section 2 to make the tradeoff between using estimates
for each alarm box based on data from that box alone,
and on data averaged over the neighborhood containing
" that box. A complete account of this work is given in [2].

3.1 Defining the Estimates

The empirical Bayes methods will perform best if
applied separately to groups of alarm boxes in the Bronx
which are small neighborhoods such that all boxes have
similar probabilities of a box-reported alarm signaling a
t. gtructural fire. Starting with a map of the Bronx and &
printout showing the number of box-reported alarms and
box-reported structural fires at each box for 1967-9,' we
formed neighborhoods whose boxes had similar alarm

rg. I characteristics with the following requirements:
o
"%ﬁ e 1. Neighborhoods should be geographically connected ;
(ST 2. Boxes with obvious geographical properties (those around
o~ parks, or on highways), should be grouped together;
i o, 3. Each neighborhood should have at least 100 alarms in the
period 1967-9;
[ 4. Each neighborhood should have at least four boxes unless it
l contains only one box with such a large number of alarms
A that that box alone could be used to estimate the proba-
i ‘f\-‘\\' - bility that an alarm signals a structural fire.
¥ :‘:‘ - . » » N
| ‘; Keeping these requirements in mind, we grouped the ap-
o proximately 2,500 boxes into a set of 216 neighborhoods.
A We now show how the empirical Bayes methods pre-
. .~ sented in Section 2 can be applied to each of the 216

i neighborhoods. For a fixed neighborhood, let % be the
number of boxes in the neighborhood with at least one
alarm, let ¥; be the number of box-reported structural
fires and let n; be the number of box-reported alarms at
the sth box in the neighborhood with N = Y%, n: .

All data referred to here are for 1967-9. Then con-
ditional on =; Y: has a binomial distribution with
parameters n; and p;. Letting X; = Y,/n;, then approxi-
mately, X: ~ N(p,, pwi/ni where ¢; = 1 — p.. Since
Var (X:) = p:gi/n: depends on n; and on the unknown
Pi; the assumptions for the equal variance empirical

1 Many neighborhoods i ,in New York are changing so rapidly that wo decided
to use only threo years of data,

! pendency on p; is to use an est

as the estimate where

B = (I/N) TianX: snd ¢=(1—3).

An alternative method is to make a variance stabilizins
transformation. The arcsin transformation of the squat
root can be used to stabilize the variance. Let

X, = arcsin (VY/ns), £-= 1,2, -k,

2 = (1/N) i nXs

then E(X;) = arcsin (v¥p;) and Var (X;) = (1/4n,) whe
p: is the conditional probability of a structural fire a
box ¢.

Our unequal variance normal model given in Sectio
2 is approximately valid in either case. For the untra
formed data, 8; = p; and D; = ($§/n;) while when h
variance stabilizing transformation is made, 6 = aresiffs
(¥p:) and D; = (1/4n;). Empirical Bayes estimates of 64 4
can be made in either case, although using the trans3d
formed data, the estimate &; of arcsin (+p:) must ‘2
converted to an estimate of p; by

B = sin® () + ((1 — 2sin? 6)/[4(N/k) + 2]} B:

where B; depends on the empirical Bayes model -?,’
(see [1 D). ?'

We computed the constant prior (2.8), and proporg
tional prior (2.9), empirical Bayes estimates for both th .i
untransformed and transformed data. The resulting fo §
estimates of p;, as well as the box history estnna
(Yi/n:) of p; were compared with the proportnon off
box-reported alarms in 1970 which signaled structura
fires at each box using likelihood ratio tests.

Any of these estimators can be modified using the;
Efron-Morris limited translation version of the estiy
mator [5]. This modification ensures that the estimato
of 6; is not shifted so far from X; that 4, is 1ncon518tent*
with X;. Too large a shift can occur if the value of
Bi(X:— X) is large compared to VD;, the standard,
deviation of X:{6:. In our application, limiting the shift
of the estimate means that no one fire alarm box
can have its 8 shifted too much by the surrounding
neighborhood.

To use the Efron-Morris modification, we limit the
amount 4; can deviate from X, to one standard deviation
of X, Efron and Morris give an extensive evaluation of
these methods in [5]. Rather than try the Efron-Morris
modification on all four empirical Bayes methods, we
arbitrarily chose two methods: the proportional prior
model with no transformation and the proportional prior
model with transformed data. Less ‘than half of one
percent of the box estimates were affected by the modifi-
cation in either case, and almost no box estimates were
changed substantially by the modification. Since the
effect was small and computing costs were higher wi
the modification, we elected not to use it. ‘%
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1. Distribution of B, by Number of Alarms Per Box

Number of boxes with specified alarm frequencies (1967 ~69)

Alarma
Total
1-8 8-10 11-15 16-20 21-35 36-60 61-120 121-240 Over 240

O0to .1 0 0 (0) 5 (.01) 6 {.02) 20 (.10) 83 (.27 97 (.49) 125 (.64) 106 (.75) 87 (.92) 509 (.20) ot >,
Ao 2 0 (0 8 (.01) .28 (.07} B4 (27) BE (.43) 126 (.41) 73 (a7 43 (22 30 (21) o {0} 476 (.19) ] o
21 3 0 () 14 (.03) 104 (.25) 12 (87), 59 (28) 69 (.22) 16 (,08) 22 (11) 1 (01) 0 {0) 397 (.16) y

Sto 4 0 (0 50 (.10) 125 (.30) 57 (.19) 22 (A1) 12 (.04) 6 (.03) 4 (.02) 0 {0 0 {0) 276 (1)

4 5 0 (0 100 (.21) 89 (.21) 25 (.08) 5 (.02) 6 (.02) 4 (.02 0 (0) 0 (0 0 (0) 229 (.09) i
Sto 8 0 (0 96 (.19) 38 (.09) 7 (.02 1 (.00) 5 (.02) 1 (.00 0 (0 0 (0 0 (0} 148 (.06) 3.3
810 .7 0 ({0) 68 (.14 7 (.02) 6 (.02) 4 (.02 1 (.00 0 {0} 0 (0 0 (0) 0 {0) 86 {.08) i
Jto B 0 (0 78 (.16) 8 (.02) 4 (01) 2 (.01) 0 (0) 0 {0} 0 (0} 0 (0) [N (] 92 {.04) "ipz;
810 9 0 (0) 44 (.08) 6 (.01) 0@ 0 (0) 0 (.0) 0 (0) 0 () 0 (0 0 (0 50 (.02)

St010 168 (1.0} 37 {.08) 11 (.03) 5 (.02} 3 (0N 6 (.02) 2 (01) 0 4 (.03) 6 (.08) 232 (09) % ;

* Mean 8 1.0 .60 38 29 23 18 13 a1 .10 .08 35 J :

No.of boxés 158 403 418 308 202 308 199 194 11 73 2493 R

N NQTE: Numbers in parentheses give the proportions of each column,
£
. All four of the empirical Bayes procedures performed
gﬁimﬂm-ly and dominated the box-history estimates when

hey were compared to 1970 data using likelihood ratio
bsts. We chose the constant prior estimator with no
il'ansformanon, because it is simple, and because the

;ilonstant prior distribution allows the high alarm rate
;&1 Doxes, and low alarm rate boxes, to have different
S Weights attached to neighborhood information, as com-
pared to box-specific information.

“Table 1 gives the distribution of B; as a function of
he number of box-reported alarms at the box during
1967-9 [see (2.8)]. It is included because the size of B,
ures how much the estimate for box 7 uses the
) g ghborhood estimate X, as opposed to the box-history
fasatimate X,. We see from Table 1 that B; is larger for
e O alarm-rate boxes and smaller for high alarm-rate
=Boxes. This confirms our intuition that the high alarm-
qte boxes should use the box-history estimate more,
rhile the low alarm-rate boxes should use the neighbor- -

p ‘1(- od estimate X more, since their own box history is
%300 small to give an accurate estimate of 6;. Thus, the
pirical Bayes estimates act as an insurance policy
inst inaccurate estimation in that they use mostly
history when there is enough of it, and use neighbor-
q00d information when there is not enough box history
ormation.

0 kmg across the row labeled “Mean B, we see
‘ tﬁe mean of B is a decreasing functlon of the
ber of alarms per box. With the exception of the
es with very large numbers of alarms, note that the
ive distribution of B; shifts from lngh to low. The
plumns for boxes with the large number of alarms per

¢ (over 120) show ten boxes listed with a -B; of 1.
ose ten boxes are one-box neighborhoods, and thus an
pirical Bayes procedure was not applied to those boxes.

The Effect of the Estimates on Initial Dispatch Policies

Ir primary goal in developing empirical Bayes esti-
as Yo use them as an alternative to the traditional

S 7. " o
‘7&, .‘"én’,{-{" ~

PR

* Intervals for values of B, Include upper end point. Thus .2 to .3 means .2 < 8, = 3. Standard deviation of 8, = .288, ¢
* &, is calculated using (2.8) assuming a constant prior distribution and no transformation.
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box-history estimates of the probability that an alarm
reported from Box ¢ signals a structural fire. We com-

{ +
34

X
A

pared the performance of these two procedures using a v @*
loss function which reflected the way the estimates ‘;%
would be used. Since the estimates will be used to define .
a dispatch policy, our loss function is based on the a:»

properties of the dispatch policies determined by the two
estimates,

We consider the class of initial dispatch policies which
consist of specifying a number, P*, such that if for box %,
the estimated probability that an alarm is a structural
fire is less than P*, then we send a reduced response to the
box and send a larger initial dispatch otherwise. For
example, if for Box ¢ the estimate is less than P*, we
send one ladder truck to a box-reported alarm, and
otherwise, we dispatch two ladder trucks. To compare
the losses when using the empirical Bayes estimators
with those of the box-history estimators, we evaluate
what would have happened in 1970 if we had used the
preceding dispatch policy with each set of estunates_
based on 1967-9 data.

The performance of each dispatch policy has two..;,_
dimensions:* a savings in the number of runs to those
alarms which received a reduced response and a penalty
for the delayed response to those structural fires which
required more equipment than was dispatched initially.
Because these two effects are not comparable, we fix the -
number of runs getting a reduced response using:
set of estimators, and then compare the number of;
structural fires that received a reduced response with
each digpatch policy. f

We ordered all the boxes in the Bronx by the box’s
estimated probability that an alarm signals a structuml
fire, using each of the two estimates. For a given numbe ;

13

LIt is true thet the averago time interval from the slarm until the initially
dispatohed equipment errives at the scene will be r d as the ber of runs
decreases. We may ignore this effect, however, sinca it is reasonable to pasume that £
it depends primarily on the number of runs saved rather than on the idmﬁty oAr
tha boxes which i




.., 1 f, boxes for each

3 "'f"&%:" b A
estimating method yield
thus a set of boxes which should receive a reduced
response.

Table 2 compares the number of structural fires which
would have received a reduced response using each
estimator for the goal of saving about 10 percent (4,500)

Y2 ¥
LR YT Ay w
SR 3l

@

" of the runs and the goal of saving about 50 percent

-

I

~ Goal of 4,500 runs saved

’(21,000) of the runs. For each of the two goals, Table 2
shows the performance for all boxes in the Bronx as well
as for each of three groups of boxes where each group
has an equal number of box-reported alarms. Groups
with equal numbers of alarms were used because the
effect of estimating errors for the boxes in each group
depends on the number of alarms reported from the
group, rather than the number of boxes in the group.
This is because each alarm is an opportunity for the Fire
Department to avoid a wasted overresponse. Examining
these three groups separately shows more clearly where
the empirical Bayes estimators are superior to the box-

_ history estimators. We separate the boxes which receive

a reduced response into the three alarm-rate groups,
however, and compare the boxes within each group
separately. :

The actual number of runs saved is higher than the
goals noted in Table 2 because the reduced responses
were added in one box increments yielding the slight
overshoot shown in the table, )

In the three right-hand columns of Table 2, the dis-
patch policies are based on all the boxes, but the columns
for each group refer to only the boxes in that group being
compared. For example, if we choose to save 4,500 runs
by dispatching only one ladder rather than two ladders
to 4,500 alarms, the empirical Bayes dispatch policy will

2. Dispatch Policy Performance®

A A
underrespond to only

Al
boxes

Group 1*
boxes

Group 2°
boxes

Group 3*°

item boxes

Number of boxes with
reduced response

793
(427)

770
(392)

22 1
(31 @

2708 926 103
177) (1238) (558)

162 21 0
(99) {27) (12)

002 500 500

4524
(4505)

183
(138)

000

Total runs saved

Structura! fires with
reduced response

Signiticance prababllity®
Goal of 21,000 runs saved

Number of boxes with
reduced response

1437
(1600)

21167
(21188)

1584
(1515)

001

1267
(1436)

9221
(9347)

569
{564)

.068

129
(122

6233
(5974)

468
(435)

100

41
42)

§713
(5864}

527
(516)

.000

Tota! runs saved

Structural flres with
roduced response

Significance probabillty®

» Numbers in pasenthesis refer to emplirical Bayes estimators while other numbers
refer to box-history estimates. The significance probabillly Is based on a one-talled
test.

*Groups 1, 2 and 3 comprise those boxes having fewer than 70 alarms, between
71 and 200 alarms and over 200 alarma, respactively, in 1967-9,

¢ See {2] for a description of this calculation,

2
) . 2

. . -
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#ip .

3§ stl%ctural fires as

183 structural fires for the box-history dispgigk
This savings of 45 underresponses (which is stat
significant), is apportioned among the three,&
follows: X
Boz

history
1 162

2 21

3 0

183

E.B.

99
27
12

138

Group

Total

As these numbers show, the number of undg
saved (63) by using the empirical Bayes estima
than the box-history estimates in Group 1, j
alarm-rate group, although comprising only one;

alarms. This phenomenon reflects the large o
low alarm rate boxes whose low but inaccufdfq
history estimates places them in the reduced;ié
category—770 boxes as compared to the empiri
policy having 392 boxes in Group 1.

When our goal is saving half the runs (21,
situation changes. The saving of 1,564 — 1,5
underresponses to structural fires, though still
cally significant, is spread over all three groupss
largest contribution coming from the high
group. The goals of saving 4,500 and 21,000
chosen for illustrative purposes. In practical sit{}
the goal will depend on the alarm rates, number}

wide range of goals, we found that the losses as
in number of structural fires receiving underregp

were higher for dispatch rules based on :,?jf,"pl_

estimates, as compared to empirical Bayes. es

[}

APPENDIX

{
The computation of 4 and S(ei, vA) is deseribed for the
p¢ case. To get an iterative method for computing the solutigf’
equation S(a1, v4) = (k — 1){4 + D), we use the fact thatios
value 4o, S3

ELS (aap 7401 = B(They atl X — Xlvag®D)
= E(Tho1 aag] (Xe — v = [Rvag) =P |
= Ty [(Ao + D)/ (pido + DY] :

[lpid + D) — vaulpid + D)]g
= Zfu1 Caglpid + D) :

where

1 1
k p—
Crs = Ao+ D Lj=1t (p;Ao + D;) pido+ Ds
A 7 o + Ds - 1
‘ =1 (p;A¢ + Dy)

= agq,¢(1 =
Note that if 4e = 4,
E[S(aagy v49)] = Zi=1 (pid + D)Cagi = (k — 1)(A
Using (A.1), we define a series of estimators for A as foll
Ae=0 ’

the responses, is greater than the savings (4§ k

companies available, workload and other factors: a}fi
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tinuing in this ‘msnner, .
dj1 = [Saiy, v2)) =~ They DC1sY/ TEay Clgins

ruleis: if 4, < 0, set 4 = 0, otherwise, define 4 to be the limit
the sequence A;. Note that 4; is an unbiased estimator of A for
all 5 so that S(xa4,, v4;) may be used in (2.7) to estimate B:.

* > Substituting p; = 1, yields the estimators for the constant prior
rencecase. In [4], Efron and Morris give an alternative generalization of
~.  the James-Stein estimator for the p; = 1 case. In studying regression
63 estimmates, Dempster [3] uses estimators which he calls “Stein’” and
-6 “Ridge” estimators, which are almost identical to our proportional
12 prior and constant prior estimators, respectively. In the proportional
“~ prior case a4, = D/D; for all 4, so that B can be computed directly,
® without using the above iterative procedure. Although we have
pomapplied only two sets of values of p;, any set given by the analyst
ratiesn be used with the above procedure to get empirical Bayes

timators.
e ltep

hird" [Received September 1973. Revised August 1974.]
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1 It is amusing to note that the English translation, made under Bateson's influence, changed
Mendel's careful wording “nicht zu unterschiitzen” to the overstatement “cannot be overesti-

mated.”
t The name of August Weismann has been repeatedly misspelled in recent years. It should

suggest a wise man, not a white man.

DYNAMIC PROGRAMMING AND STATISTICAL
COMMUNICATION THEORY

By Ricuarbp BELLMAN AND RoBERT KALABA

RAND CORPORATION, SANTA MONICA, CALIFORNIA

Communicated by P. A. Smith, May 28, 1967

1. Introduction—The purpose of this paper is to present some applications of

the functional equation technique of dynamic programming® ? to the study of some

= Inultistage stochastic decision processes arising in statistical communication theory.

%  Our starting point is a paper by Kelly? in which it is shown that the rate of

“# transmission, as obtained by Shannon from considerations of coding of information, *

can be obtained from a certain multistage process with a suitable eriterion function.

In this paper we shall complete a result of Kelly’s and considerably extend the

4, scope of the investigation. Further results and proofs of the theorems stated be-
“* low will be presented in a subsequent publication.

z “5’.; 2. An M-Signal Noisy Channel—Consider a noisy channet which is ealled upon
#*%  to transmit any of M different signals, which we name 1, 2, . . ., M, in succession.
;. Let
py = the conditional probability that the j signal has actually
. been sent whenever the ¢ signal is received;
gs = the probability that the 1 signal is received at any particular
. time.

’“; . A gambler, upon receiving a particular signal, is required to place bets on what
»%  he believes the transmitted signal to have been. He is allowed to bet & quantity

,»_‘o,&
2, that the ¢ signal was transmitted, subject to the restrictions that » 2, < z, his
i

initial capital, and z; > 0. If he bets correctly, he then receives rz, otherwise

+. Dothing. This process continues for N stages, with a payoff at the end of each

;fx stage. Assuming that the transmitted signals are independent of each other and

gy {that the gambler wishes to maximize the expected value of a function ¢(w) of the

' nal total at the end of the process, the problem is to determine an optimal wagering

i policy.
‘&}E‘? 3. Dynamic Programming Formulation.—Let us define the sequence of functions

| “ <t fn(z) = the expected value of ¢(w) obtained using an optimal
Bt N-stage wagering policy, starting with a capital of z. (8.1)
Bk forN =1,2,...,andz > 0.

i3 Then the principle of optimality yields the recurrence relations

)
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Jil@) 5%& {Max i{ Py ¢(7‘:Z; + - i zn)},

i=] T <zj=1 =1
M M M
fn@@) = 3 ¢ Max 2 Pqu—l("jz: +z - Zz:)}. N2 2

i=] T Sx =1 gml

If we specialize the function ¢(w), we obtain a noteworthy result:
THEOREM 1. In the case where p(w) = log w, we have

fu(z) = log z 4 Nk,
where

M M M
k = 2q¢{ Maz %, py log (T;z; +1 -2 za)}-
) i=1 Zg <1j=1 1=s ,

The optimal policy is independeat of the number of stages remaining, independent
of the quantity of money available, and independent of the sequence {q,} . It s deler- g
mined by the maximization in equalion (3.4). 3
A particular case of the above in which it is required that Z:z, = g yields the ex- ;

¢
pression — Y_p¢ log p; of Shannon. This furnishes an interesting link with infor-
i

mation theory. The foregoing result resolves a problem left open by Kelly.

There is an analogous result if p(w) = w°, > 0. .

4. Generalizations.—The results of the preceding section may be generalized
in many directions, in particular, to time-dependent processes and to the case where !
there is & continuum of types of signals. In both cases the functional equation i
technique is applicable, and the analogue of Theorem 1 holds.

Another interesting type of process to consider is that in which the »,; are fixed,
but unknown, constants. For an expository account of the problems encountered
in this area we refer to Robbins cf. also Bellman® and Robbins.? !

As we shall show in a subsequent paper, a number of these problems may be T %
treated by means of the foregoing techniques. T

5. Correlated Signals.—Let us now consider the case where the signals are not
independent. Although a large variety of questions of this type may be formu-
lated, the following discussion of a simple process will illustrate the general method
that may be employed.

Assume that there are only two types of signals, say 0 and 1, that the probability

of correct transmission at any stage depends upon whether or not the preceding ‘r

signal was transmitted correctly, and that the gambler bets at each stage a certain A

quantity of his resources that the signal he receives was actually sent. Let &

pe = the probability of correct transmission of the kth signal if the ,}’,}

(k — 1)st signal was transmitted correctly. (5.1)

r. = the probability of correct transmission of the Fth signal if the

(k — 1)st signal was transmitted incorrectly. ¥

Define the sequence of functions .
fu(x) = the expected value of the logarithm of the final capital ob-
tained from the remaining & stages of the original N-stage

€

heisg
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process, when one has a capital of r and the information
that the N — kth signal was transmitted correctly, and
uses an optimal policy.
ge(x) = the corresponding expected value in the case where the
N — kth signal was transmitted incorrectly. (5.2)
Then

fk(x) = 02:(35 [p,\'~k+1fk—1(x + y) + (l - p.\"-*k-{-l)gk"l(x - y)]l
SyVaz

ge(x) ——-01:132: [rv—erfe—r(x + y) + (1 — Ta—ea)e—1(Z — y) . (6.3)
sysey

[t follows inductively that
Je(x) = logz + a,,  gi(x) = logz + b, (5.4)

where a,; and b, are independent of z. The recurrence relations for the sequence
{as, by} ave readily obtained from equation (5.3).

' R. Bellman, Dynamic Programming (Princeton, N.J.: Princeton University Press, 1957).
*R. Bellman, “The Theory of Dynamic Programming,” Bull. Am. Math. Soc., 60, 503-515,
1954,
T, Kelly, “A New Interpretation of Information Rate,” Bell System Tech. J., 35, 917-926, 1956.
{ C. Shannon, “A Mathematical Theory of Communicution,” Bell System Tech. J., 27, 379423,
623-656, 1948. .
* H. Robbins, “Some Aspects of the Sequential Design of Experiments,” Bull, 4m. Math. Soc.,
g“ 58, 527-536, 1952.
%z " R. Bellman, “A Problem in the Sequential Design of Lixperiments,"” Sankhya, 16, 221229,
% 1956,
i " H. Robbins, “A Sequential Decision Problem with a Pinite Memory,” these PROCEEDINGS,
£-  42,020-923, 1956.

. SOLUTION OF THE BURNSIDE PROBLEM FOR EXPONENT 6*

5. By MarsHALL Hawy, Jz.

wa

ig.{ifi{ ) DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY

Jﬁ”} Communicated by Suunders Mac Lane, June 5, 1957 )

«  'The restricted Burnside problem for exponent 6 was solved by Philip Hall and
1% Graham Higman.! They even found the order of the largest finite group of expo-
ffé(;nent. 6 generated by k elements, thix order being

g+ @+

& I3
Swhore a = 1 4+ (k- D3+ @ T @ g0gp 21 4ok~ 128 A proof is
s Sketched here that a finitely generated group of exponent 6 is necessarily finite
’%@J\fing the Burnside problem for exponent 6. The proof will be published in detail
Isewhere.
‘It has been shown by Levi and van der Waerden? that there is a group B(3, &)
generated by & elements and of exponent 3 whose order is 3t, K = & + (%) + ,
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QUESTAR 20-40...
the tracking Questar

The Questar high-resolution optical system now provides a wide
variety of instruments for accurate image reproduction in critlcal film
and TV auto-tracking applications. For example, the Questar 20-40
operates at two par-focal, remotely controlled focal lengths: 20
inches at F5.7 and 40 inches at F11.4.

This ruggedized unit is equipped with solenoid-operated over-
exposure shutter and four-port filter wheel assembly, likewise
remotely controlled. Provision is made, also, for the manual insertion
of additional filters. The instrument is available in aluminum, stainless
steel, or Invar steel, depending on the degree of temperature
compensation that is necessary; and the optical components, too,

52
can be furnished in varipu empé'@lg-st le materials: Pyrex®, / gzﬁy
quartz or CerVit®, e B ¢

Sl | Borkeft MO LY

When you have been building--Maksutov telescopes for 25 years, 4
as we have here at Questar, you have learned a great deal about
the ways in which these superlative optics can be used in special
situations. The capabilities of this versatile system, on which we have
built our world-wide reputation, have unfolded year by year as we have
pursued the engineering challenges presented to us.

Ruggedization and temperature stability were early demands made
of this miniaturized instrument in applications where space was the
third limiting factor. And so, in the beginning, our off-the-shelf Questars
were modified by substituting materials to meet the requirements. These,
in turn, became our stock items, so that now when a sudden need
arises for a telescope to put aboard an orbiting satellite, or to use with
stabilizing equipment mounted In a helicopter, or to observe hot
materials in a laboratory, there is usually a modified Questar instantly T
available.

Demands for more highly specialized equipment, such as the track-
ing instrument above, have kept us in the forefront of research and
development In this field, where optical modification, also, is often a
part of the job. If you have a special problem we may have solved it.
Why not call us? q- £ 2 .
® Registered Trademark of Corning Glass Warks { & @ Questar Corporation, 1975.
® Registered Trademark of Owens-lllinols; Inc. .
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SEND FOR OUR LITERATU,RE. OUR 1_?7_7‘ BOOKLET ABOUT
QUESTAR, THE WORLD'S FINEST, MOST VERSATILE TELE-
SCOPE CONTAINS BEAUTIFUL PHOTOGRAPHS BY QUESTAR
QWNERS. $1 COVERS MAILING COSTS ON THIS CONTINENT:
BY AIR, TO 5. AMERICA $3; EUROPE AND N. AFRICA, $3.50;
ELSEWHERE $4.

QUESTAR

siTY HERBARIA. Siri von Reis. Alf3H
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Stein’s Paradox in Statistics

the average of past events. Stein’s paradox defines circumstances

in which there are estimators better than the arithmetic average

“Nometimes a mathematical result is
strikingly contrary to generally
' held belief even though an obvi-
usly valid proof is given. Charles Stein
{ Stanford University discovered such
paradox in statistics in 1955. His result
ndermined a century and a half of
sork on estimation theory, going back
o Karl Friedrich Gauss and Adrien Ma-
ie Legendre. After a long period of re-
istance to Stein’s ideas, punctuated by
requent and sometimes angry debate,
ne sense of paradox has diminished and
stein’s ideas are being incorporated
nto applied and theoretical statistics.

Stein’s paradox concerns the use of ob-
erved averages to estimate unobserv-
ible quantities. Averaging is the second
nost basic process in statistics, the first
eing the simple act of counting. A base-
sall player who gets seven hits in 20 offi-
‘ial times at bat is said to have a batting
werage of .350. In computing this sta-
iistic we are forming an estimate of the
slayer’s true batting ability in terms of
s observed average rate of success.
Asked how well the player will do in his
iext 100 times at bat, we would proba-
oly predict 35 more hits. In traditional
statistical theory it can be proved that
10 other estimation rule is uniformly
setter than the observed average.

The paradoxical element in Stein’s re-
sult is that it sometimes contradicts this
:lementary law of statistical theory. If
we have three or more baseball players,
and if we are interested in predicting fu-
ture batting averages for each of them,
then there is a procedure that is better
than simply extrapolating from the
three separate averages. Here “better”
nas a strong meaning. The statistician
who employs Stein’s method can expect
‘0. predict the future averages more ac-
curately no matter what the true bat-
ting abilities of the players may be.

Baseball is a sport with a large and
carefully compiled body of statis-
‘ics, which supplies convenient material
lor illustrating the workings of Stein’s

thod. As our primary data we shall
onsider the batting averages of 18 ma-
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jor-league players as they were recorded
after their first 45 times at bat in the
1970 season. These were all the players
who happened to have batted exactly 45
times the day the data were tabulated. A
batting average is defined. of course,
simply as the number of hits divided by
the number of times at bat; it is alwaysa
number between 0 and 1. We shall de-
note each such average by the letter y.

The first step in applying Stein’s meth-
od is to determine the average of the
averages. Obviously this grand average.
which we give the symbol ¥, must also
lie between 0 and 1. The essential proc-
ess in Stein's method is the “shrinking”
of all the individual averages toward
this grand average. If a player’s hitting
record is better than the grand average,
then it must be reduced; if he is not hit-
ting as well as the grand average, then
his hitting record must be increased. The
resulting shrunken value for each player
we designate z. This value is the James-
Stein estimator of that player’s batting
ability, named for Stein and W. James,
who together proposed a particularly
simple version of the method in 1961.
Stein’s paradox is simply that the z val-
ues, the James-Stein estimators, give
better estimates of true batting ability
than the individual batting averages.

The James-Stein estimator for each
player is found through the following
equation: z = ¥ + «y — »). The quantity
(¥ — ¥ is the amount by which the play-
er's batting average differs from the
grand average. The equation thus states
that the James-Stein estimator z differs
from the grand average by this same
quantity (v — ¥ multiplied by a con-
stant, ¢. The constant ¢ is the “shrinking
factor.” If it were equal to 1, then the
equation would state that the James-
Stein estimator for a given player is
identical with that player's batting aver-
age; in other words, y equals z. Stein's
theorem states that the shrinking factor
is always less than 1. Its actual value is
determined by the collection of all the
observed averages.

In the case of t e—bis’eball data. the
grand-average 71§ .26 5 and the shrinking

} The best guess about the future is usually obtained by computing

factor cis .212. Substituting these values
in the equation, we find that for each
player z equals .265 + .212(§ — .265).
Because ¢ is about, .2, each average
will shrink about 80 percent of the dis-
tance to the grand average. and the total
spread of the averages will be reduced
about 80 percent.

As an example consider the late Ro-
berto Clemente, who was the leading
batter in the major leagues when our
statistics were compiled. For Clemente
» is equal to .400, and z can be deter-
mined by evaluating the expression
z =265+ .212(.400 — .265). The re-
sult is .294. In other words, Stein’s theo-
rem states that Clemente’s true batting
ability is best estimated not by .400 but
lies closer to .294. Thurman Munson,
in a batting slump early in the 1970 sea-
son, had an average of only .178. Sub-
stituting this value in the equation. we
find that his estimated batting ability is
substantially increased: the James-Stein
estimator for Munson is .247.

hich set of values, y or z is the

better indicator of batting ability
for the 18 players in our example? In
order to answer that question in a pre-
cise way one would have to know the
“true batting ability” of each player.
This true average twe shall designate
with @ (the Greek letter theta). Actually
it is an unknowable quantity, an abstrac-
tion representing the probability that a
player will get a hit on any given time at
bat. Although 6 is unobservable, we
have a good approximation to it: the
subsequent performance of the batters.
It is sufficient to consider just the rg-

mainder of the 1970 season, which in-,
clu nine ti as much 4
e prelimi i €

The expected statistical error in such a
sample is small enough for us to neglect
it and proceed as if the seasonal average
were the “true batting ability” ¢ of a
player. That is one reason for choosing
batting averages for this example. In
most problems the true value of € can-
not be determined.

One method of evaluating the two es-
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BATTING ABILITIES of 18 major-league baseball players are estimated more accurately by the method of
Charles Stein and W. James than they are by the individual batting averages. The averages employed as estima-
tors are those calculated after each player had bad 45 times at bat in the 1970 season, The true batting ability
of a player is an unobservable quantity, but it is closely approximated by his long-term average performance.
Here the true ability Is represented by the batting average maintained during the remainder of the 1970 season.
For 16 of the players the initial average is inferior to another number, the James-Stein estimator, as a predictor
of batting ability, The James-Stein estimators, considered as a group, also have the smaller total squared error.
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timates is by simply counting the%r suc-
cesses and failures. For 16 of the 18
players the James-Stein estimator z is
closer than the observed average-» to the
“true,” or seasonal, average 8. A more
quantitative way of comparing the two
techniques is through the total squared
error of estimation. This is measured by
first determining the actual error of each
prediction, given by (8 — y) and (6 — z).
. for each player. Each of these quantities
is then squared and the squared values
are added up. The observed averages y
have a total squared error of .077.
whereas the squared error of the James-
Stein estimators is only .022. By this
comparison, then, Stein’s method is 3.5
times as accurate. It can be shown that
for the data given 3.5 is close to the ex-
pected ratio of ‘the total squared errors
of the two methods. We have not just
been lucky.

uppose a statistician makes a random
sampling of automobiles in Chicago
and finds that of the first 45 recorded
nine are foreign-made and the remain-
ing 36 are domestic. We want to esti-
mate the true proportion of imported
cars in Chicago, a quantity represented
by another unobservable 6. The ob-
sginved average of 9/45 = .200 is one es-
tunate Another can be obtained by sim-
ply lumping this problem together with
that of the 18 baseball players. Substi-
tuting the value .200 in the equation
used in that problem gives a James-Stein
estimator of .251 for the imported-car
ratio. (Actually the addition of a 19th
value changes the grand average 7 and
'also slightly alters the shrinking factor c.
“The, changes are small, however; the
améhded value of z is .249.)
. In this case intuition argues strongly
that the observed average and not the
James-Stein estimator must -be the bet-
ter’ predictor. Indeed, the entire proce-
dure seems silly: what could batting av-
‘erages have to do with imported cars? It
is here that the _paradoxical nature of
}Stem s theorem is most uncomfortably
apparent. The theorem applies as well to
1 9 problems as it did to the original
18 There is nothing in the statement of
the. theorem that requires the compo-
gnent problems to have some sensible re-
X latlon to one another.
p.-The, same dxsconcertms indifference
£16. common sense can be demonstrated
giir another way. What does Clemente’s
8,400 observed average have to do with
' ; ax Alvis, who was poorest in batting
aong the 18 players? If Alvis had had
i early-season hitting streak, batting
gy 444 instead of his actual .156, the
: : mes-Stein estimator for Clemente's

5' oy, estimate of Qlemente's ability?
XIhEy ere noteven in the same league.)
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JAMES-STEIN ESTIMATORS

JAMES-STEIN ESTIMATORS for the 18 baseball players were calculated by “shrinking” the
individual batting averages toward the overall “average of the averages.” In this case the grand
average is .265 and each of the averages is shrunk about 80 percent of the distance to this value.
Thus the theorem on which Stein’s method is based asserts that the true batting abilities are
more tightly clustered thap the preliminary batting averages would seem to suggest they are.

It is questions of this kind that have
been raised by critics of Stein’s method.
In order to reply to them it will be neces-
sary to describe the method rather more
carefully.

Taking an average is an easy and fa-
miliar process that seems to need no
justification. Actually it is not obvious
why the average is so often useful in
estimating the true center of gravity of a
random process. The explanation lies in
the distribution that the values of the
random variable tend to assume.

The distribution most common in sci-
entific work is the “normal” distribu-
tion, described by a bell-shaped curve: it
was first investigated in depth by Gauss
and is sometimes called the Gaussian
distribution. It is constructed by assum-
ing that the random variable can take on
any value along some axis; the probabil-
ity that it falls within any given interval
is then made equal to the area under the
same interval of the bell-shaped curve.
The curve is completely specified by two
parameters: the mean, 8, which lies at
the peak of the curve, and the standard
deviation, which measures how closely
the values are distributed around the
mean. It is customary to assign the stan-
dard deviation the symbol o (sigma).
The larger the standard deviation is, the
more widely dispersed the data are.

In probability theory a known mean
and standard deviation are employed to
predict future behavior. A problem in
statistics proceeds in the opposite direc-
tion: from observed data the statistician
must infer the mean # and the standard
deviation o,

Suppose, for example, the measure-.
ment of some random variable x yields

the five successive values 10.0, 9.4, 10.3,
8.6 and 9.7. Suppose further the values
are known o be part of a normal distri-
bution with a standard deviation of 1.
What is the value of the true mean 6? In
principle the mean could have any val-
ue, but some values are more likely than
others. A mean of 6.5, for example,

would require that all five values be un-
der the extreme tail of the curve and that
none be found near the center. Gauss
showed that among all possible choices
for the mean, the average X of the ob-
served data (which in this case has a val-
ue of 9.6) maximizes the probability of
obtaining the data actually seen. In this
sense the average is the most likely esti-
mate of the mean; in fact, Gauss con-
structed the normal distribution just so
that it would have this property.

There is a further justification, also
pointed out by Gauss, for choosing the
average as the best estimator of the un-
observable mean 8. Gauss noted that the
average of the data is an “unbiased” esti-
mator of the mean, in the sense that it

favors no selected value of 8. To be”

more precise, the average is unbiased
because the expected value of ¥ equals
the true & no matter what & may be.
There are infinitely many unbiased esti-
mators of 6, nong of which estimates &
perfectly. Gauss showed that the expect-
ed squared error of estimation for the
average ¥ is lower than that for any oth-
er linear, unbiased function of the obser-
vations. In the 1940’s it was demonstrat-
ed that no other unbiased function of the
data, whether it is linear or nonlinear,
can estimate 0 more accurately than the
average, in terms of expected squared
error. An essential contribution to that
proof had been made in the 1920's by

B e i

11

3 ty
o mernman

D O e et taed

-

T A ST LTSI

=7

Y
31 GRS
FEE b s

!

Y
€3
P

LI T
i

Lotz Sanldisnt

N

P g e

et
o b

Mt

1



&

ER Y

LR, L i,
S R. A. Fisher, who showed that all the
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in-
formation about @ that can possibly be
found in the data is contained in the av-
erage X.

In the 1930's a mathematically more
rigorous approach to statistical infer-
ence was undertaken by Jerzy Neyman,
Egon S. Pearson and Abraham Wald:
the ideas they developed are part of
what is now known as statistical deci-
sion theory. They discarded the require-
ment of unbiased estimation and exam-
ined all functions of the data that could
serve as estimators of the unknown
mean 8. These estimators were com-
pared through a risk function, defined as
the expected value of the squared error
for every possible value of 8.

Consider three competing estimators:
the average of the data, X; half that aver-
age, /2, and the median of the data, or
middle value. For both the average and
the median the risk function is constant;
that is merely another way of saying that
their expected squared error in predict-
ing the mean @ is the same no matter
what the value of @ really is. Of the two
constant risk functions. the one for the
average X is uniformly smaller by a fac-
tor of about two-thirds; clearly the aver-
age is the preferred estimator. In the lan-
guage of decision theory the median is
said to be “inadmissible” as an estimator
of 0. since there is another estimator
that has a smaller risk (expected squared

TLE vﬁ""? 5 o Bl " a
error) no matter what 0 is- (it shéul
mentioned, however, that when the data
have a distribution other than the nor-
mal one, it is possible for the order of
preference to be reversed.)

For the estimator X/2, which is biased
toward the value 8 = 0, the risk function
is not constant; this estimator is accurate
if @ happens be close to zero, but the
expected squared error increases rapid-
ly as the true mean departs from zero.
The risk function describes a parabola,
with the minimum point at 8 = 0: if the
mean does happen to be zero, then the
risk function for ¥/2 is four times small-
er than that for the average itself. At
large values of the mean, however, the
average X regains its superiority. With
other estimators we can poke down the
risk function below that of the average
at any point we wish to, but it always
pops up again somewhere else.

There remains the possibility that
some other estimator has a risk that is
uniformly lower than that of the aver-
age. In 1950 Colin R. Blyth, Erich L.
Lehmann and Joseph L. Hodges, Jr.,
proved that no such estimator exists. In
other words, the average X is admissi-
ble, at least when it is applied to one set
of observations for the purpose of esti-
mating one unknown mean.

Stein’s theorem is concerned with the
estimation of several unknown means.
No relation between the means need be
assumed; they can be batting abilities or
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othier hand, the means are assumeg?
indeperident of one anothet’ i€
ing estimators for these means it:
again convenient to employ & risk fin s
tion defined as the sum of the expeci
values of the squared errors of e
tion for all the individual means.i
oy
he obvious first choice of an €}
tor for each of several meany
average of the data related to that
The entire historical developmen
statistical theory from Gauss thr
decision theory argues that the a
is an admissible estimator as..lof
there is just one mean, 0, to be estim
ed. Stein showed in 1955 that the a\céi-
age is also admissible for eétimating(}w“‘
means. Stein’s paradox is simply ‘hi§sxy
proof that when the number of meg’hs% 5
exceeds two, estimating each of theirby it
its own average is an inadmissible o2
cedure. No matter what the values’o
the true means, there are estimation
rules with smaller total risk. %
In 1955 Stein was able to prove this O
proposition only in those cases where
the number of means, a quantity we .-
shall designate k, was very large. Steift’s?4
1961 paper written in collaboration with, *f*’fg’
James extended the result to all values’si:
of k greater than 2; moreover, it did go iniZs
a constructive manner. Stein and James:%
not only showed that estimators must:%

x:

exist that are everywhere superior to the!7:}
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NORMAL DISTRIBUTION of a random variable around the mean
value of that variable provides the fundamental justification for esti-
mation by averaging, The distribution is defined by two parameters,
the mean, 0, which locates the central peak of the distribution, and
the standard deviation, o, which measures how widely scattered the
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data points are. [t is assumed in defining the distribution that the var-
jable x can take on any value on the x axis. The most likely value of
x Is, by definition, the mean 6. The probability that x lles within any
given interval on the axis, such as that between the points ¢ and b,
is equal to the area under the bell-shaped curve between those points.
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PROBLEM IN STATISTICS is to deduce from a set of data the
true mean and standard deviation of the distribution. Even when it is
known that the distribution is a normal one and that the standard de-
viation is 1, the mean could in principle have any value. Some val-
ves, however, are more likely than others. For example, the five data

averages; they were also able to provide
an example of such an estimator.

The James-Stein estimator has al-
ready been defined in our investigation
of batting averages. It is given by the
equation z = ¥ + ¢{y — 7), where y is the
average of a single set of data, y is the
grand average of averages and ¢ is 2
“shrinking factor.” There are several

“ other expressions for the James-Stein es-
timator, but they differ mainly in detail.
., Allof them have in common the shrink-
. ing factor ¢ it is the definitive character-
aistic of the James-Stein estimator.
., Inthe baseball problem ¢ was treated
as if it were a constant. Agtually it is
determined by the observed averages
and therefore is not a constant. The
shrinking factor is given by the equation
v . hrndlb:*'"a'7_‘5_92‘.£ﬁi‘
afe ™ T k=30
o - S0 —nE’

) Here k i5 again the number of unknown
4 means, o2 is the square of the standard
deviation and X(y — 2 is the sum of the
squared deviations of the individual av-
erages y from the grand average 7.

Let us briefly explore the meaning of
2. this rather forbidding equation. With k

1" and o2 fixed, we find that the shrinking
} 72 factor ¢ becomes smaller (and the pre-
% “dicted means are more severely affected
2% “by it) as the expression S(y — 7)? gets
55 smaller. On the other hand, ¢ increases.
‘approaching unity, and the shrinking is
siless drastic as the expression E(y — j)?
increases.
“What-do these cquations mean in
rins of the behavior of the estimator?
y effect the James-Stein procedure
makes a preliminary guess that all the
nobservable means are near the grand
gverage 7. If the data support that guess
¥ the sense that the observed averages
r8 themselves not too far from 7, then
e estimates are all shrunk £urther
peissttoward the grand average. If the guess is
s vcontradicted, then not much shrinking is
one. These adjustments to the shrink-
ctor gre accomplished through the
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effect the distribution of averages
around the grand average y has on the
equation that determines ¢. The number
of means being estimated also influ-
ences the shrinking factor, through the
term (k — 3) appearing in this same
equation. If there are many means, the
equation allows the shrinking to be
more drastic, since it is then less likely

+
10 11 12

points (x) given here could be described by a normal distribution with
a mean of 6.5 only if all five points were more than two standard de-
viations above the mean. It can be shown that the data are most likely
to be generated by a distribution with a mean equal to the observed
average of the data, denoted %. In tbis case the average is equal to 9.6.

badly shaken by the James-Stein coun-
terexample. From the standpoint of
mathematics this is the most unsettling
aspect of Stein’s theorem. Indeed, the
paradox wasnot discovered earlier large-
ly because of a strong prejudice that the
estimation problem, being stated with-
out reference to any particular origin.
should be solved in a similar way.

that variations observed represent mere/\?/

random fluctuations.

With ¢ calculated in this manner, the
risk function for the James-Stein estima-
tor is less than that for the sample aver-
ages no matter what the true values of
the means @ happen to be. The reduction
of risk can be substantial, particularly
when the number of means is larger than
five or six. The risk function is not con-
stant for all values of the true mean 0, as
it is for the observed averages. The risk
of the James-Stein estimator is smallest
when all the true means are the-same. As
the true means depart from one another
the risk of the estimator increases, ap-
proaching that of the observed averages
but never quite equaling it. The James-
Stein estimator does substantially better
than the averages only if the true means
lie near each other, so that the initial
guess involved in the technique is con-
firmed. What is surprising is that the es-
timator does at least marginally better
no matter what the true means are.

The expression for the James-Stein es-
timator that we have employed refers all
observed averages to the grand average
7. This procedure is not the only one
possible; other expressions for the esti-
mator dispense with 7 entirely. What
cannot be avoided is the introduction of
some more or less arbitrary initial guess
or point of origin for the estimator. The
observed averages, it will be noted, do
not depend on a choice of origin. Before
Stein discovered his method it was felt
that such “invariant” estimators must be
preferable to those whose predictions
change with each choice of an origin.
The theory of invariance, to which Stein
had been a principal contributor, was
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Nplications of Stein's method tend to
involve large sets of data with
many unknown parameters. Some of
the difficulties of such problems, as well' , ¥
as the practical potential of the method
itself, can be illustrated by an exam-
ple: an analysis of the distribution of the
disease toxoplasmosis in the Central
American country of El Salvador.
Toxoplasmosis is a disease of the

blood that is'endemic in much of Cen- - I
tral America and in other regions of the "%,
Tropics. In El Salvador roughly 5,000 :-.

people drawn in varying numbers from

36 cities were tested for toxoplasmosis. w&,“e

The observed rate of incidence for each
city can conveniently be expressed by «
comparison with the national rate (that -
is, with the grand average 7). A mea- -

M,

.

sured rate of .050, for example, denotes &5

A

a city with an incidence of the disease 5. *

kS
percent higher than the national aver- : .~

age. The measured rates have an ap-
proximately normal distribution. The
standard deyiations of these distribu-
tions are known, but they differ from

city to city, depending inversely on how 7, | i '

large a sample population was tested in
that city. It is the task of the statistician
to estimate the true mean 0 of the distri- + =

bution for each city from the measured | 2

incidence .
In this case the appropriate form of

the James-Stein estimator is z = ¢y. The -,
simplification, which was introduced by .. *%

us. is made possible by the chosen man- i<;

ner of expressing the observations p. .24}

They are defined in such a way that the
grand average ¥ is zero, and terms con-
taining y therefore drop out of the equa-
tion. On the other hand. the estimation
[} v k3
':"‘; 't" %. ?— (Y, Y{j)
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VARIOUS ESTIMATORS of a single true mean, 6, can be evaluated by way of a risk func-
tion. The risk is defined as the expected value of the squared error of estimation, cousidered as
a function of the mean 0. The average of the data, ¥, is an estimator with a constant risk func-
. tion: no matter what the true mean Is, the expected value of the squared esror is the same. The
median, or middle value, of the data also has constant risk, but it is everywhere greater (by a
actor of 1.57) than the risk of the average. Half the average (£/2) is an estimator whose risk
depends on the actual value of the mean; the risk is smallest when the mean is near zero and in-
creases rapidly when the mean departs from zero. For the estimation of a single mean there is
no estimator with a risk function that is everywhere less than the risk function of the average .
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TOTAL SQUARED DEVIATION OF MEANS FROM THEIR AVERAGE

TOTAL RISK FUNCTION for the James-Stein estimators Is everywhere less than that for
the individual observed averages, as long as the number of means being estimated is greater
than two. In this case there are 10 unknown means, The risk is smallest when all the means are
clustered at a single point. As the means depart from one another the risk of the James-Stein
estimators increases, approaching that of the observed averages but never quite reaching it.
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fact that the shrinking factor.c
ent for each city, varyipg invers
the standard deviation of y for tha :
This dependence of the shrinking factqf
on the standard deviation has a simplé
intuitive rationale. A large standayd.de=
viation implies a high degree of randony:
ness or uncertainty in & measurém §'.f“*
If the measured incidence is unuspgige:
ly large, it can therefore be attributedt:
more reasonably to random fluctuatibfge?
within the normal distribution than ;r'%
genuinely large value of the true mégne;s
@. It is thus proper to reduce this valfje
drastically, that is. to apply a’ small’s
shrinking factor. = o5
The same argument can be made eveg;
more forcefully by returning for ‘g
moment to baseball. Frank O'Conno;
pitched for Philadelphia in the 1893
son. He batted twice'in his major-leag
career, hitting successfully both tim L
His observed 'batting average is hencd &z
1.000. The James-Stein rule for the 18¥%
players considered above estimates ™ *
O'Connor’s true batting ability to be, ‘.
265 + 212(1.000 — .265) = .421 (ig-
noring the effect of the new data on the i
grand average and on the shrinking facs#
tor). This is a silly estimate, althoughz
not as silly as 1.000. A perfect average,’";fi
after two times at bat is not at all mcon:-‘,f‘;ég
sistent with a true value in the range™yy
from .242 to .294 that is estimated for ¥
the other players. The shrinking con-y
stant ¢ applied to O’Connor’s average
should be severer in order to compen- -
sate for the smaller amount of data
available for him. sl

For the El Salvador observationss’s
most of the shrinking factors are quite ..
gentle, between .6 and .9, but a few are
in the range from .1 to .3. Which set of
numbers should we prefer, the James-
Stein estimators or the measured rates
of incidence? That depends largely on
what we want to use the numbers for.

If the Minister of Health for El Salva-
dor intends to build local hospitals for
people suffering from toxoplasmosis.
the James-Stein estimators probably of-
fer the more reliable guidance. The rea-
son is that the expected value of the total
squared error is smaller for the James-
Stein estimators: in fact, it is smaller by
a factor of about three. The important
point in this calculation is that the ex-
pected error is added up for all the cities.
Any particular hospital might be the
wrong size or in the wrong place, but the
sum of all such mismatches would be
smaller for the James-Stein estimators
than for the observed rates.

The James-Stein estimators are also
likely to be preferable for determining
the ordering of the true means. In this
regard it is notable that the city with the
highest apparent incidence (according
to the measured rates y) is ranked 12th ~
according to the James-Stein estimators.
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The estimate is drastically reduced, be-
cause the sample was very small in that
city. This information might be useful if
there were funds for only one hospital.
Suppose an epidemiologist wants to

as rainfall, temperature, elevation or
population? Once again the James-Stein
estimators are preferred; a rough calcu-
lation shows that they would give a clos-
er approximation in about 70 percent of

measured incidence may well be superi-
or to the James-Stein estimator: when a
single city is considered in isolation. As
we have seen, the James-Stein method
gives better estimates for a majority of

investigate the correlation of the true in-  the cases.

cidence in each city with attributes such

There is one purpose for which the

cities, and it reduces the total error of
estimation for the sum of all cities, It
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Q{CIDENCE OF TOXOPLASMOSIS, a disease of the blood, was
sarveyed in 36 clties in the Central American country El Salvador.
The measured incidence in each city can be regarded as an estimator
of the true incidence, which is unobservable. The measured incidence
has a normal distribution whose standard deviation is determined by
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the number of people surveyed in that city. The measured rates are
expressed in terms of deviation from the national incidence (the aver-
age of the rates observed in all the cities). Thus zero denotes exactly
the national rate, and a city with a measured incidence of —.040 would
have an observed rate 4 percent lower than the country as a whole.

OBSERVED AVERAGES
-.100 200 400

e
QEVIATION

A A A A A A aYAYA

m/Z/////////////

-.800 -.500 -.400 -.300 2,200

ha Vel

RINKING of the observed toxoplasmosis rates to yield a set of
lames-Stein estimators substantially alters the apparent distribution
of the disease, The shrinking factor is not the same for all the cities
Jut instead depends on the standard deviation of the rate measured
in that city. A large standard deviation implies that a measurement is
oR a szl sample and 13 subject to large random fluctuations;
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that measurement is therefore compressed more than the others are.
In the El Salvador data the most extreme observations tend to be cor-
related with the largest standard deviations, again suggesting the un.
relinbility of those measurements. Compared with the observed rates,
the James-Stein estimators ean be proved to have a smaller total error
of estimation. They also provide a more accurate ranking of the cities.
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cannot be demonstrated. however, that
_ Stein’s method is superior for any par-

- ticular city; in fact, the James-Stein pre-

diction can be substantially worse.

Estimating the true mean for an isolat-
ed city by Stein's method creates se-
“rious errors when that mean has an atyp-
ical value. The rationale of the method

* is to reduce the overall risk by assuming

that the true means are more similar to
one another than the observed data.
That assumption can degrade the esti-
mation of a genuinely atypical mean.
Now we see why imported cars should
not be included in the same calculations
with the 18 baseball players. There is a
substantial probability that the automo-
biles will be atypical.

Suppose we ignore this hazard and
lump together all 19 problems; we can
then calculate the total expected
squared error as a function of the true
percentage of imported cars. It turns out
that the risk for both the baseball play-
ers and the automobiles is reduced only
if the percentage of imported cars hap-
pens to lie in the same range as the esti-

e
ing averages;

risk of error for both kinds of problem
is increased.

The question of whether or not a par-
ticular mean is “typical” is a subtle one
whose implications are not yet fully un-
derstood. Returning to the problem of
toxoplasmosis in El Salvador, let us sin-
gle out for attention the city of Alegria,
which has the fifth-smallest measured
incidence of the disease: —.294. It is one
of four cities included in the survey that
are east of the Rio Lempa: all four have
distinctly negative values of measured
incidence y. It is plausible to suppose
that this is no coincidence and that the
rate of toxoplasmosis east of the Lempa
is genuinely lower. A James-Stein es-
timator that consolidates information
from the entire country therefore may
be less than optimal in these cities, We
have developed techniques for taking
advantage of extra information of this
kind, but the theory underlying those
techniques remains rudimentary.

An astute follower of baseball might
be aware that just as each player's bat-
ting ability can be represented by a

abilities % a3
have an approximately normal distri
tion. This distribution has a mean"Q
270 and a standard deviation of 01524
With this valuable extra informationg
which statisticians call a “prior distribu
tion," it is possible to construct a sup
or estimate of each player’s true battin
ability. This new estimator, which:x
shall give the label Z, is defined by 1
equation Z=m + CQ{y — m). Here y'i
agdin the observed batting average o
the.player, but y, the grand average, has:f
been replaced by m, the mean of
prior distribution, which is known oz
have the value .270. In addition there i
a different shrinking factor, C, which de*
pends in a simple way on the standard
deviation of the prior distribution (equal’
to .015). ¥
<
This procedure is not a refinement offif
Stein’s method; on the contrary, it
predates Stein's method by 200 years. It
is the mathematical expression of a
theorem published (posthumously) in
1763 by the Reverend Thomas Bayes. .3
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UNRELATED PROBLEMS can be lumped together for analysis by average of all 19 numbers. Nothing in the statement of Stein’s theo-

Stein’s method, but only at the risk of increasing error. To the 18 rem prohibits such a procedure, but the evident illogic of it has justi-

batting averages computed earlier, for example, one might add a 19th fiably been criticized. In fact, including the unrelated data can reduce

number representing the proportion of imporfed cars observed in the risk function only if the proportion of imported cars happens to

be near the mean batting average of .265; otherwise the expected er-
ror of estimation for both the cars and the baseball players isincreased.

Chicago. New James-Stein estimators could then be calculated for
both the baseball players and the automobiles, based on the grand
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He was able to show that this estimator
minimizes the expected squared error
associated with the randomness in both
the observed averages () and in the true
‘means (0). -
The formula for the James-Stein esti-
mator is strikingly similar to that of
Bayes’s equation. Indeed, as the number
of means being averaged grows very
large, the two equations become identi-
cal. The two shrinking factors ¢ and C
converge on the same value, and the
grand average y becomes equal to the
mean m precisely when all players are
included in the calculation. The James-
Stein procedure, however. has one im-
portant advantage over Bayes's method.
The James-Stein estimator can be em-
ployed without knowledge of the prior
distribution; indeed, one need not even
suppose the means being estimated are
normally distributed. On the other
hand, ignorance has a price, which must
be paid in reduced accuracy of estima-
tion. We have shown that the James-
Stein method increases the risk function
by an amount proportional to 3/k,
where k is again the number of means
‘being estimated. The additional risk is
therefore negligible when k is greater
than 15 or 20. and it is tolerable for k as
| g_s’gnall as 9.
38: In_this historical context the James-
gigtejh estimator can be regarded as an
%*#empirical Bayes rule,” a term coined
by Herbert E. Robbins of Columbia
_University. In work begun in about 1951
Robbins demonstrated that it is possible |
to achieve the same minimum risk asso-
Giated with Bayes's rule without knowl-
%A?fgge of the prior distribution, as long as
;3the number of means being estimated is
%g_-«:v‘éry large. Robbins' theory was imme-
e diately recognized as a fundamental
% breakthrough; Stein’s result, which is
closely related, has been much slower in
gaining acceptance.

3,27 the James-Stein estimator is not the
.1 only one that is known to be better
“than the sample averages. Indeed, the
: gme&Stein estimator is itself inadmis-
<3jble! Its failure lies in the fact that the
¥ shrinking facto I
2 values, and it then pulls the means away
Z;¥rom the grand average rather than
4= toward it. When that happens, simply
. Q@eplacmg ¢ with zero produces a better
% *‘cstfmator. This estimator in turn is also
£47 fhadmissible, but no uniformly better
< estimator has yet been found.
- The search for new estimators contin-
& %Jes. Recent efforts have been concen-
% ttated on achieving results like those ob-
tained with Stein's method for problems
volving distributions other than the
ormal distribution. Several lines of
&%ork, including Stein's and Robbins’
;?;’-;‘and more formal Bayesian methods
seem 1o be converging on a powerful
'g;neral theory of parameter estimation.
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