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The method we are using is essentially that of Rudolf Carnap (‘“Logical Foundations of Proba-
bility” University of Chicago Press, 1950), one of the founders of “Logical Positivism”.

He represented each possible universe by a long string of symbols. For d symbol types and
strings of length n there are just d" possible universes to consider. To do prediction he postu-
lated a function that assigned a probability to each sequence, and he computed probabilities of
continuations of sequences just as we do. He felt that scientific laws were, strictly speaking,
unnecessary - That this probability function was all that was needed for science.

He began his investigation with a very simple probability function, that could only deal with
regularities found in a Bernoulli sequence but he regarded this as only the beginning of his
investigation.

We now use a more complex probability function that is able to deal with any describable
regularity in the symbol string.

Unfortunately, our function is usually impossible to calculate exactly, and even approxima-
tions can be very difficult. We make these approximations by finding short codes for the data.
Any regularity in our data is expressible as a short code. All of our scientific laws are means for
writing short codes. A fair amount of the intellectual work in science consists of finding short

codes.
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Scientific work is of 3 kinds:

1. Finding regularities in data (as we’ve just discussed).

2. Deciding what new data to get.

3. Getting the new data. (This can be passive observation or active experimentation.)

Step 3 is most often a kind of engineering problem.

Step 2 is more difficult to characterize. It is guided by regularities found in old data. . . Scientific
laws that seem to work.

Often there will be several theories that fit past data equally well, but extrapolate differently
in new areas. We can then gather new data to distinguish between the theories. If there are
many among which to choose and the needed experiments are expensive in time, money and/or
manpower, we can use algorithmic probability to decide which theories are most likely and help
decide which experiments to do.

However, in general, deciding what new data to get is a difficult problem - it guides the
direction in which our science moves. It is critical in the scientific process.

One possible basis for decision is utilitarian. The idea that our ultimate purpose is that of
simply surviving in a hostile, often unpredictable environment - that many species of living crea-
tures have been evolutionarily selected for properly directed sense of curiosity - a characteristic
that turns out to have survival value.

But ultimately the question that controls the direction of our experiments is “What do we

want from science?”.



Open problems, conjectures

1. If we have enough time to get all the short codes for some data, we have a good idea about
rate of convergence of errors in probability. When we do not have all of the short codes

(which is the usual situation) what is the expected rate of convergence?

A key might be this conjecture: If we search for codes for our data in a “honest, unbiased”
manner, then the mean bit cost per symbol given by these codes on the known data will
be an unbiased estimate of the mean bit cost per symbol for the future data. “Honest,
unbiased”, will of course have to be defined. “Unbiased estimate” means the expected

value of its error is zero.

2. In science, up to now, all laws that have been proposed are of essentially fixed length
- They do not grow as the data that they are to explain grows. Algorithmic probability
makes it possible to have data descriptions that surpass this limitation. - e.g. Grammars
for ethnic languages could increase in size as the size of the body of data grew. Conceiv-

ably this sort of thing could be used in physics as well ...

3. Another limitation in current scientific theories is that they all use total recursive func-
tions - functions that must have a value for all possible arguments. Algorithmic proba-
bility makes it possible to consider partial recursive functions - These do not have this

limitation. Can they be usefully applied in science?

4. T have mentioned that algorithmic probability can be used to give good approximate prob-
abilities to scientific theories and conjectures. The exact details of this have yet to be

worked out.



5. Levin’s search method enables us to deal with the halting problem in searching for pre-
dictive codes. Since this gives it the capability to go beyond any prediction methods that
have ever been tried, it looks like a promising direction of investigation. I do not know of

anyone having tried it.

To implement this, one might design a simple machine or instruction set that could assign
probability values to simple sequences - Then increase the complexity of the machine to

become universal.

6. It is not difficult to show that algorithmic probability satisfies the first 5 axioms of Kol-
mogorov [“Foundations of Probability” 1950 translation of 1933 book]. It has not been

shown for the 6th axiom, however. Although I suspect it is true, I have not proved it.

7. In linear regression, algorithmic probability makes a prediction based on the weighted
sum of the predictions made using all possible number of coefficients. Up to now, statisti-
cians have always simply selected the “best” number of coefficients and made predictions

based upon it.

Are there any cases in which using more than one set of coefficients is superior?



